Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671286

RESUMO

CpdB is a 3'-nucleotidase/2'3'-cyclic nucleotide phosphodiesterase, active also with reasonable efficiency on cyclic dinucleotides like c-di-AMP (3',5'-cyclic diadenosine monophosphate) and c-di-GMP (3',5'-cyclic diadenosine monophosphate). These are regulators of bacterial physiology, but are also pathogen-associated molecular patterns recognized by STING to induce IFN-ß response in infected hosts. The cpdB gene of Gram-negative and its homologs of gram-positive bacteria are virulence factors. Their protein products are extracytoplasmic enzymes (either periplasmic or cell-wall anchored) and can hydrolyze extracellular cyclic dinucleotides, thus reducing the innate immune responses of infected hosts. This makes CpdB(-like) enzymes potential targets for novel therapeutic strategies in infectious diseases, bringing about the necessity to gain insight into the molecular bases of their catalytic behavior. We have dissected the two-domain structure of Escherichia coli CpdB to study the role of its N-terminal and C-terminal domains (CpdB_Ndom and CpdB_Cdom). The specificity, kinetics and inhibitor sensitivity of point mutants of CpdB, and truncated proteins CpdB_Ndom and CpdB_Cdom were investigated. CpdB_Ndom contains the catalytic site, is inhibited by phosphate but not by adenosine, while CpdB_Cdom is inactive but contains a substrate-binding site that determines substrate specificity and adenosine inhibition of CpdB. Among CpdB substrates, 3'-AMP, cyclic dinucleotides and linear dinucleotides are strongly dependent on the CpdB_Cdom binding site for activity, as the isolated CpdB_Ndom showed much-diminished activity on them. In contrast, 2',3'-cyclic mononucleotides and bis-4-nitrophenylphosphate were actively hydrolyzed by CpdB_Ndom, indicating that they are rather independent of the CpdB_Cdom binding site.


Assuntos
2',3'-Nucleotídeo Cíclico Fosfodiesterases/química , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Adenosina/metabolismo , Biocatálise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfatos/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , Sítios de Ligação , Domínio Catalítico , Proteínas de Escherichia coli/genética , Histidina/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Mutação Puntual/genética , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato
2.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836629

RESUMO

Human triokinase/flavin mononucleotide (FMN) cyclase (hTKFC) catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation of D-glyceraldehyde and dihydroxyacetone (DHA), and the cyclizing splitting of flavin adenine dinucleotide (FAD). hTKFC structural models are dimers of identical subunits, each with two domains, K and L, with an L2-K1-K2-L1 arrangement. Two active sites lie between L2-K1 and K2-L1, where triose binds K and ATP binds L, although the resulting ATP-to-triose distance is too large (≈14 Å) for phosphoryl transfer. A 75-ns trajectory of molecular dynamics shows considerable, but transient, ATP-to-DHA approximations in the L2-K1 site (4.83 Å or 4.16 Å). To confirm the trend towards site closure, and its relationship to kinase activity, apo-hTKFC, hTKFC:2DHA:2ATP and hTKFC:2FAD models were submitted to normal mode analysis. The trajectory of hTKFC:2DHA:2ATP was extended up to 160 ns, and 120-ns trajectories of apo-hTKFC and hTKFC:2FAD were simulated. The three systems were comparatively analyzed for equal lengths (120 ns) following the principles of essential dynamics, and by estimating site closure by distance measurements. The full trajectory of hTKFC:2DHA:2ATP was searched for in-line orientations and short distances of DHA hydroxymethyl oxygens to ATP γ-phosphorus. Full site closure was reached only in hTKFC:2DHA:2ATP, where conformations compatible with an associative phosphoryl transfer occurred in L2-K1 for significant trajectory time fractions.


Assuntos
Apoenzimas/genética , Simulação de Dinâmica Molecular , Fósforo-Oxigênio Liases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Trifosfato de Adenosina/química , Apoenzimas/química , Sítios de Ligação , Catálise , Domínio Catalítico/genética , Di-Hidroxiacetona/química , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Flavina-Adenina Dinucleotídeo/química , Gliceraldeído/química , Humanos , Fósforo-Oxigênio Liases/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
3.
J Biol Chem ; 289(15): 10620-10636, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24569995

RESUMO

Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.


Assuntos
Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Animais , Catálise , Domínio Catalítico , Dimerização , Flavina-Adenina Dinucleotídeo/química , Frutose/química , Gliceraldeído/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Especificidade por Substrato , Suínos
4.
Front Microbiol ; 13: 843068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391727

RESUMO

Streptococcus suis and Streptococcus agalactiae evade the innate immune system of the infected host by mechanisms mediated by cell wall-anchored proteins: SntA and CdnP, respectively. The former has been reported to interfere with complement responses, and the latter dampens STING-dependent type-I interferon (IFN) response by hydrolysis of bacterial cyclic-di-AMP (c-di-AMP). Both proteins are homologous but, while CdnP has been studied as a phosphohydrolase, the enzyme activities of SntA have not been investigated. The core structure of SntA was expressed in Escherichia coli as a GST-tagged protein that, after affinity purification, was characterized as phosphohydrolase with a large series of substrates. This included 3'-nucleotides, 2',3'-cyclic nucleotides, cyclic and linear dinucleotides, and a variety of phosphoanhydride or phosphodiester compounds, most of them previously considered as substrates of E. coli CpdB, a periplasmic protein homologous to SntA and CdnP. Catalytic efficiency was determined for each SntA substrate, either by dividing parameters k cat /K M obtained from saturation curves or directly from initial rates at low substrate concentrations when saturation curves could not be obtained. SntA is concluded to act as phosphohydrolase on two groups of substrates with efficiencies higher or lower than ≈ 105 M-1 s-1 (average value of the enzyme universe). The group with k cat /K M ≥ 105 M-1 s-1 (good substrates) includes 3'-nucleotides, 2',3'-cyclic nucleotides, and linear and cyclic dinucleotides (notably c-di-AMP). Compounds showing efficiencies <104 M-1 s-1 are considered poor substrates. Compared with CpdB, SntA is more efficient with its good substrates and less efficient with its poor substrates; therefore, the specificity of SntA is more restrictive. The efficiency of the SntA activity on c-di-AMP is comparable with the activity of CdnP that dampens type-I IFN response, suggesting that this virulence mechanism is also functional in S. suis. SntA modeling revealed that Y530 and Y633 form a sandwich with the nitrogen base of nucleotidic ligands in the substrate-binding site. Mutants Y530A-SntA, Y633A-SntA, and Y530A+Y633A-SntA were obtained and kinetically characterized. For orientation toward the catalytic site, one tyrosine is enough, although this may depend on the substrate being attacked. On the other hand, both tyrosines are required for the efficient binding of good SntA substrates.

5.
Biotechnol Adv ; 38: 107382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30978386

RESUMO

Natural compounds have significant anticancer pharmacological activities, but often suffer from low bioavailability and selectivity that limit therapeutic use. The present work critically analyzes the latest advances on drug delivery systems designed to enhance pharmacokinetics, targeting, cellular uptake and efficacy of anticancer phytoconstituents. Various phytochemicals, including flavonoids, resveratrol, celastrol, curcumin, berberine and camptothecins, carried by liposomes, nanoparticles, nanoemulsions and films showed promising results. Strategies to avoid drug metabolism, overcome physiological barriers and achieve higher concentration at cancer sites through skin, buccal, nasal, vaginal, pulmonary and colon targeted delivery are presented. Current limitations, challenges and future research directions are also discussed.


Assuntos
Nanopartículas , Curcumina , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lipossomos , Compostos Fitoquímicos
6.
Bioact Mater ; 5(3): 447-457, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32280834

RESUMO

Incorporation of bioactive natural compounds like polyphenols is an attractive approach for enhanced functionalities of biomaterials. In particular flavonoids have important pharmacological activities, and controlled release systems may be instrumental to realize the full potential of these phytochemicals. Alginate presents interesting attributes for dermal and other biomaterial applications, and studies were carried here to support the development of polyphenol-loaded alginate systems. Studies of capillary viscosity indicated that ionic medium is an effective strategy to modulate the polyelectrolyte effect and viscosity properties of alginates. On gelation, considerable differences were observed between alginate gels produced with Ca2+, Ba2+, Cu2+, Fe2+, Fe3+ and Zn2+ as crosslinkers, especially concerning shrinkage and morphological regularity. Stability assays with different polyphenols in the presence of alginate-gelling cations pointed to the choice of calcium, barium and zinc as safer crosslinkers. Alginate-based films loaded with epicatechin were prepared and the kinetics of release of the flavonoid investigated. The results with calcium, barium and zinc alginate matrices indicated that the release dynamics is dependent on film thicknesses, but also on the crosslinking metal used. On these grounds, an alginate-based system of convenient use was devised, so that flavonoids can be easily loaded at simple point-of-care conditions before dermal application. This epicatechin-loaded patch was tested on an ex-vivo skin model and demonstrated capacity to deliver therapeutically relevant concentrations on skin surface. Moreover, the flavonoid released was not modified and retained full antioxidant bioactivity. The alginate-based system proposed offers a multifunctional approach for flavonoid controllable delivery and protection of skin injured or under risk.

7.
Biochem J ; 413(1): 103-13, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18352857

RESUMO

ADPRibase-Mn (Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase) was earlier isolated from rat liver supernatants after separation from ADPRibase-I and ADPRibase-II (Mg2+-activated ADP-ribose pyrophosphatases devoid of CDP-alcohol pyrophosphatase activity). The last mentioned are putative Nudix hydrolases, whereas the molecular identity of ADPRibase-Mn is unknown. MALDI (matrix-assisted laser-desorption ionization) MS data from rat ADPRibase-Mn pointed to a hypothetical protein that was cloned and expressed and showed the expected specificity. It is encoded by the RGD1309906 rat gene, which so far has been annotated simply as 'hydrolase'. ADPRibase-Mn is not a Nudix hydrolase, but it shows the sequence and structural features typical of the metallophosphoesterase superfamily. It may constitute a protein family of its own, the members of which appear to be specific to vertebrates, plants and algae. ADP-ribose was successfully docked to a model of rat ADPRibase-Mn, revealing its putative active centre. Microarray data from the GEO (Gene Expression Omnibus) database indicated that the mouse gene 2310004I24Rik, an orthologue of RGD1309906, is preferentially expressed in immune cells. This was confirmed by Northern-blot and activity assay of ADPRibase-Mn in rat tissues. A possible role of ADPRibase-Mn in immune cell signalling is suggested by the second-messenger role of ADP-ribose, which activates TRPM2 (transient receptor potential melastatin channel-2) ion channels as a mediator of oxidative/nitrosative stress, and by the signalling function assigned to many of the microarray profile neighbours of 2310004I24Rik. Furthermore, the influence of ADPRibase-Mn on the CDP-choline or CDP-ethanolamine pathways of phospholipid biosynthesis cannot be discounted.


Assuntos
Pirofosfatases/química , Pirofosfatases/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cistina Difosfato/análogos & derivados , Cistina Difosfato/metabolismo , Citidina Difosfato Colina/metabolismo , Etanolaminas/metabolismo , Feminino , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Fígado/enzimologia , Tecido Linfoide/metabolismo , Manganês/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Açúcares de Nucleosídeo Difosfato/metabolismo , Pirofosfatases/genética , Ratos , Ratos Wistar , Proteínas Recombinantes , Especificidade por Substrato , Espectrometria de Massas em Tandem
8.
Sci Rep ; 8(1): 1036, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348648

RESUMO

Cyclic ADP-ribose (cADPR) is a messenger for Ca2+ mobilization. Its turnover is believed to occur by glycohydrolysis to ADP-ribose. However, ADP-ribose/CDP-alcohol diphosphatase (ADPRibase-Mn) acts as cADPR phosphohydrolase with much lower efficiency than on its major substrates. Recently, we showed that mutagenesis of human ADPRibase-Mn at Phe37, Leu196 and Cys253 alters its specificity: the best substrate of the mutant F37A + L196F + C253A is cADPR by a short difference, Cys253 mutation being essential for cADPR preference. Its proximity to the 'northern' ribose of cADPR in docking models indicates Cys253 is a steric constraint for cADPR positioning. Aiming to obtain a specific cADPR phosphohydrolase, new mutations were tested at Asp250, Val252, Cys253 and Thr279, all near the 'northern' ribose. First, the mutant F37A + L196F + C253G, with a smaller residue 253 (Ala > Gly), showed increased cADPR specificity. Then, the mutant F37A + L196F + V252A + C253G, with another residue made smaller (Val > Ala), displayed the desired specificity, with cADPR kcat/KM ≈20-200-fold larger than for any other substrate. When tested in nucleotide mixtures, cADPR was exhausted while others remained unaltered. We suggest that the specific cADPR phosphohydrolase, by cell or organism transgenesis, or the designed mutations, by genome editing, provide opportunities to study the effect of cADPR depletion on the many systems where it intervenes.


Assuntos
ADP-Ribosil Ciclase/química , ADP-Ribosil Ciclase/metabolismo , ADP-Ribose Cíclica/química , ADP-Ribose Cíclica/metabolismo , Manganês/química , Manganês/metabolismo , ADP-Ribosilação , ADP-Ribosil Ciclase/genética , Desenho de Fármacos , Ativação Enzimática , Humanos , Ligantes , Modelos Moleculares , Mutação , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
9.
PLoS One ; 10(2): e0118680, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692488

RESUMO

Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.


Assuntos
Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/genética , Adenosina Difosfato Ribose/metabolismo , Apirase/química , Apirase/genética , Manganês/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Animais , Apirase/metabolismo , Domínio Catalítico , Humanos , Fígado/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ratos , Homologia Estrutural de Proteína
10.
PLoS One ; 7(7): e42249, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848751

RESUMO

The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn(2+)-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg(2+) and active with low micromolar Mn(2+) in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR) in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn(2+), significant (≈25%) Mg(2+)-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart). The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Cistina Difosfato/metabolismo , Manganês/metabolismo , Pirofosfatases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Sítios de Ligação , Domínio Catalítico , AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Magnésio/farmacologia , Simulação de Acoplamento Molecular , Mutação , Pirofosfatases/química , Pirofosfatases/genética , Ratos , Especificidade por Substrato , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
11.
FEBS Lett ; 583(10): 1593-8, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19379742

RESUMO

Cyclic ADP-ribose (cADPR) metabolism in mammals is catalyzed by NAD glycohydrolases (NADases) that, besides forming ADP-ribose, form and hydrolyze the N(1)-glycosidic linkage of cADPR. Thus far, no cADPR phosphohydrolase was known. We tested rat ADP-ribose/CDP-alcohol pyrophosphatase (ADPRibase-Mn) and found that cADPR is an ADPRibase-Mn ligand and substrate. ADPRibase-Mn activity on cADPR was 65-fold less efficient than on ADP-ribose, the best substrate. This is similar to the ADP-ribose/cADPR formation ratio by NADases. The product of cADPR phosphohydrolysis by ADPRibase-Mn was N(1)-(5-phosphoribosyl)-AMP, suggesting a novel route for cADPR turnover.


Assuntos
Adenosina Difosfato Ribose/química , ADP-Ribose Cíclica/química , Manganês/metabolismo , Pirofosfatases/química , Adenosina Difosfato Ribose/metabolismo , Animais , ADP-Ribose Cíclica/metabolismo , Hidrólise , Modelos Moleculares , Pirofosfatases/metabolismo , Ratos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA