Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Med Chem ; 40: 116163, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33932711

RESUMO

Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase member of the TEC family of tyrosine kinases. Pre-clinical and clinical data have shown that targeting BTK can be used for the treatment for B-cell disorders. Here we disclose the discovery of a novel imidazo[4,5-b]pyridine series of potent, selective reversible BTK inhibitors through a rational design approach. From a starting hit molecule 1, medicinal chemistry optimization led to the development of a lead compound 30, which exhibited 58 nM BTK inhibitory potency in human whole blood and high kinome selectivity. Additionally, the compound demonstrated favorable pharmacokinetics (PK), and showed potent dose-dependent efficacy in a rat CIA model.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
2.
Brain ; 142(12): 3963-3974, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31687737

RESUMO

Williams syndrome is a rare genetic disorder caused by hemizygous deletion of ∼1.6 Mb affecting 26 genes on chromosome 7 (7q11.23) and is clinically typified by two cognitive/behavioural hallmarks: marked visuospatial deficits relative to verbal and non-verbal reasoning abilities and hypersocial personality. Clear knowledge of the circumscribed set of genes that are affected in Williams syndrome, along with the well-characterized neurobehavioural phenotype, offers the potential to elucidate neurogenetic principles that may apply in genetically and clinically more complex settings. The intraparietal sulcus, in the dorsal visual processing stream, has been shown to be structurally and functionally altered in Williams syndrome, providing a target for investigating resting-state functional connectivity and effects of specific genes hemideleted in Williams syndrome. Here, we tested for effects of the LIMK1 gene, deleted in Williams syndrome and important for neuronal maturation and migration, on intraparietal sulcus functional connectivity. We first defined a target brain phenotype by comparing intraparietal sulcus resting functional connectivity in individuals with Williams syndrome, in whom LIMK1 is hemideleted, with typically developing children. Then in two separate cohorts from the general population, we asked whether intraparietal sulcus functional connectivity patterns similar to those found in Williams syndrome were associated with sequence variation of the LIMK1 gene. Four independent between-group comparisons of resting-state functional MRI data (total n = 510) were performed: (i) 20 children with Williams syndrome compared to 20 age- and sex-matched typically developing children; (ii) a discovery cohort of 99 healthy adults stratified by LIMK1 haplotype; (iii) a replication cohort of 32 healthy adults also stratified by LIMK1 haplotype; and (iv) 339 healthy adolescent children stratified by LIMK1 haplotype. For between-group analyses, differences in intraparietal sulcus resting-state functional connectivity were calculated comparing children with Williams syndrome to matched typically developing children and comparing LIMK1 haplotype groups in each of the three general population cohorts separately. Consistent with the visuospatial construction impairment and hypersocial personality that typify Williams syndrome, the Williams syndrome cohort exhibited opposite patterns of intraparietal sulcus functional connectivity with visual processing regions and social processing regions: decreased circuit function in the former and increased circuit function in the latter. All three general population groups also showed LIMK1 haplotype-related differences in intraparietal sulcus functional connectivity localized to the fusiform gyrus, a visual processing region also identified in the Williams syndrome-typically developing comparison. These results suggest a neurogenetic mechanism, in part involving LIMK1, that may bias neural circuit function in both the general population and individuals with Williams syndrome.


Assuntos
Quinases Lim/genética , Rede Nervosa/fisiopatologia , Lobo Parietal/fisiopatologia , Síndrome de Williams/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Haplótipos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Síndrome de Williams/diagnóstico por imagem , Síndrome de Williams/genética , Adulto Jovem
3.
J Med Ethics ; 41(7): 567-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25717142

RESUMO

Minimising the use of animals in experiments is universally recognised by scientists, governments and advocates as an ethical cornerstone of research. Yet, despite growing public opposition to animal experimentation, mounting evidence that animal studies often do not translate to humans, and the development of new research technologies, a number of countries have reported increased animal use in recent years. In the USA--one of the world's largest users of animals in experiments--a lack of published data on the species most commonly used in laboratories (eg, mice, rats and fish) has prevented such assessments. The current study aimed to fill this gap by analysing the use of all vertebrate animals by the top institutional recipients of National Institutes of Health research funds over a 15-year period. These data show a statistically significant 72.7% increase in the use of animals at these US facilities during this time period-driven primarily by increases in the use of mice. Our results highlight a need for greater efforts to reduce animal use. We discuss technical, institutional, sociological and psychological explanations for this trend.


Assuntos
Experimentação Animal/ética , Direitos dos Animais , Pesquisa Biomédica/ética , Pesquisa Biomédica/tendências , Comitês de Cuidado Animal , Animais , Animais de Laboratório , Regulamentação Governamental , Humanos , National Institutes of Health (U.S.) , Políticas , Projetos de Pesquisa/tendências , Estados Unidos , Vertebrados
4.
J Neurodev Disord ; 15(1): 29, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633900

RESUMO

BACKGROUND: Williams syndrome (WS), a rare neurodevelopmental disorder caused by hemizygous deletion of ~ 25 genes from chromosomal band 7q11.23, affords an exceptional opportunity to study associations between a well-delineated genetic abnormality and a well-characterized neurobehavioral profile. Clinically, WS is typified by increased social drive (often termed "hypersociability") and severe visuospatial construction deficits. Previous studies have linked visuospatial problems in WS with alterations in the dorsal visual processing stream. We investigated the impacts of hemideletion and haplotype variation of LIMK1, a gene hemideleted in WS and linked to neuronal maturation and migration, on the structure and function of the dorsal stream, specifically the intraparietal sulcus (IPS), a region known to be altered in adults with WS. METHODS: We tested for IPS structural and functional changes using longitudinal MRI in a developing cohort of children with WS (76 visits from 33 participants, compared to 280 visits from 94 typically developing age- and sex-matched participants) over the age range of 5-22. We also performed MRI studies of 12 individuals with rare, shorter hemideletions at 7q11.23, all of which included LIMK1. Finally, we tested for effects of LIMK1 variation on IPS structure and imputed LIMK1 expression in two independent cohorts of healthy individuals from the general population. RESULTS: IPS structural (p < 10-4 FDR corrected) and functional (p < .05 FDR corrected) anomalies previously reported in adults were confirmed in children with WS, and, consistent with an enduring genetic mechanism, were stable from early childhood into adulthood. In the short hemideletion cohort, IPS deficits similar to those in WS were found, although effect sizes were smaller than those found in WS for both structural and functional findings. Finally, in each of the two general population cohorts stratified by LIMK1 haplotype, IPS gray matter volume (pdiscovery < 0.05 SVC, preplication = 0.0015) and imputed LIMK1 expression (pdiscovery = 10-15, preplication = 10-23) varied according to LIMK1 haplotype. CONCLUSIONS: This work offers insight into neurobiological and genetic mechanisms responsible for the WS phenotype and also more generally provides a striking example of the mechanisms by which genetic variation, acting by means of molecular effects on a neural intermediary, can influence human cognition and, in some cases, lead to neurocognitive disorders.


Assuntos
Síndrome de Williams , Pré-Escolar , Adulto , Humanos , Criança , Haplótipos , Síndrome de Williams/complicações , Síndrome de Williams/genética , Córtex Cerebral , Cognição , Substância Cinzenta , Quinases Lim/genética
5.
J Neurophysiol ; 103(1): 557-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19923241

RESUMO

A spatial/nonspatial functional dissociation between the dorsal and ventral visual pathways is well established and has formed the basis of domain-specific theories of prefrontal cortex (PFC). Inconsistencies in the literature regarding prefrontal organization, however, have led to questions regarding whether the nature of the dissociations observed in PFC during working memory are equivalent to those observed in the visual pathways for perception. In particular, the dissociation between dorsal and ventral PFC during working memory for locations versus object identities has been clearly present in some studies but not in others, seemingly in part due to the type of objects used. The current study compared functional MRI activation during delayed-recognition tasks for shape or color, two object features considered to be processed by the ventral pathway for perceptual recognition. Activation for the shape-delayed recognition task was greater than that for the color task in the lateral occipital cortex, in agreement with studies of visual perception. Greater memory-delay activity was also observed, however, in the parietal and superior frontal cortices for the shape than for the color task. Activity in superior frontal cortex was associated with better performance on the shape task. Conversely, greater delay activity for color than for shape was observed in the left anterior insula and this activity was associated with better performance on the color task. These results suggest that superior frontal cortex contributes to performance on tasks requiring working memory for object identities, but it represents different information about those objects than does the ventral frontal cortex.


Assuntos
Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Cor , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Estimulação Luminosa , Reconhecimento Psicológico/fisiologia , Fatores de Tempo , Percepção Visual/fisiologia
7.
Neuroimage ; 16(2): 415-24, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12030826

RESUMO

Functional magnetic resonance imaging was used to examine developmental change in hemispheric biases for globally and locally directed analysis of hierarchical forms. In a previous reaction time (RT) study, which presented hierarchical stimuli to the visual hemifields, children 7 to 14 years of age demonstrated an emerging pattern of hemispheric differences. Initially children analyzed local elements more slowly, without a strongly lateralized advantage for local or global level processing. With age, children's development was marked by a left hemisphere advantage for local level processing that resembled an adult's and a trend toward a right hemisphere advantage for global. In the current study, 20 children 12 to 14 years old were imaged during attend-global and attend-local conditions to determine whether the developmental change in cognitive measures corresponded to a change in distribution of functional activation. Children formed two groups based on their RT performance, immature-bilateral (IB) or mature-lateralized (ML). The volume of task-related activation within lateral temporo-occipital regions of interest was compared for global and local conditions between the two groups. The IB children showed greater activation overall for local level processing, comparable activation across the two hemispheres for the global condition, and a trend of right greater than left hemisphere activation for local. In contrast, the ML children displayed right greater than left hemisphere activation during global analysis and the opposite during local processing. Importantly these patterns of functional activation mirror the profiles of RT performance. Together they demonstrate a shift from undifferentiated, bilateral processing toward hemispheric lateralization.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Dominância Cerebral/fisiologia , Imageamento por Ressonância Magnética , Processos Mentais/fisiologia , Circulação Cerebrovascular , Criança , Cognição/fisiologia , Feminino , Hemodinâmica , Humanos , Masculino , Oxigênio/sangue , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia
8.
J Int Neuropsychol Soc ; 9(4): 604-22, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12755173

RESUMO

The current study presents both longitudinal behavioral data and functional activation data documenting the effects of early focal brain injury on the development of spatial analytic processing in two children, one with prenatal left hemisphere (LH) injury and one with right hemisphere (RH) injury. A substantial body of evidence has shown that adults and children with early, lateralized brain injury show evidence of spatial analytic deficits. LH injury compromises the ability to encode the parts of a spatial pattern, while RH injury impairs pattern integration. The two children described in this report show patterns of deficit consistent with the site of their injury. In the current study, their longitudinal behavioral data spanning the age range from preschool to adolescence are presented in conjunction with data from a functional magnetic resonance imaging (fMRI) study of spatial processing. The activation results provide evidence that alternative profiles of neural organization can arise following early focal brain injury, and document where in the brain spatial functions are carried out when regions that normally mediate them are damaged. In addition, the coupling of the activation with the behavioral data allows us to go beyond the simple mapping of functional sites, to ask questions about how those sites may have come to mediate the spatial functions.


Assuntos
Infarto Cerebral/complicações , Infarto Cerebral/patologia , Transtornos Cognitivos/etiologia , Doenças Fetais , Imageamento por Ressonância Magnética , Lobo Parietal/patologia , Adolescente , Circulação Cerebrovascular/fisiologia , Criança , Transtornos Cognitivos/diagnóstico , Feminino , Seguimentos , Lateralidade Funcional/fisiologia , Humanos , Recém-Nascido , Masculino , Testes Neuropsicológicos , Paresia/etiologia , Lobo Parietal/irrigação sanguínea , Transtornos da Percepção/diagnóstico , Transtornos da Percepção/etiologia , Gravidez , Complicações na Gravidez , Índice de Gravidade de Doença , Percepção Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA