RESUMO
B cells are activated by two temporally distinct signals, the first provided by the binding of antigen to the B cell antigen receptor (BCR), and the second provided by helper T cells. Here we found that B cells responded to antigen by rapidly increasing their metabolic activity, including both oxidative phosphorylation and glycolysis. In the absence of a second signal, B cells progressively lost mitochondrial function and glycolytic capacity, which led to apoptosis. Mitochondrial dysfunction was a result of the gradual accumulation of intracellular calcium through calcium response-activated calcium channels that, for approximately 9 h after the binding of B cell antigens, was preventable by either helper T cells or signaling via the receptor TLR9. Thus, BCR signaling seems to activate a metabolic program that imposes a limited time frame during which B cells either receive a second signal and survive or are eliminated.
Assuntos
Linfócitos B/fisiologia , Mitocôndrias/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Receptor Toll-Like 9/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Citocinas/metabolismo , Glicólise , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , Fosforilação Oxidativa , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais , Receptor Toll-Like 9/genéticaRESUMO
Key events in T cell-dependent antibody responses, including affinity maturation, are dependent on the B cell's presentation of antigen to helper T cells at critical checkpoints in germinal-center formation in secondary lymphoid organs. Here we found that signaling via Toll-like receptor 9 (TLR9) blocked the ability of antigen-specific B cells to capture, process and present antigen and to activate antigen-specific helper T cells in vitro. In a mouse model in vivo and in a human clinical trial, the TLR9 agonist CpG enhanced the magnitude of the antibody response to a protein vaccine but failed to promote affinity maturation. Thus, TLR9 signaling might enhance antibody titers at the expense of the ability of B cells to engage in germinal-center events that are highly dependent on B cells' capture and presentation of antigen.
Assuntos
Formação de Anticorpos/imunologia , Apresentação de Antígeno/genética , Ativação Linfocitária/imunologia , Receptor Toll-Like 9/imunologia , Animais , Afinidade de Anticorpos , Centro Germinativo/imunologia , Humanos , Vacinas Antimaláricas , Camundongos , Receptor Toll-Like 9/agonistasRESUMO
Activation of CD4+ T cells to proliferate drives cells toward aerobic glycolysis for energy production while using mitochondria primarily for macromolecular synthesis. In addition, the mitochondria of activated T cells increase production of reactive oxygen species, providing an important second messenger for intracellular signaling pathways. To better understand the critical changes in mitochondria that accompany prolonged T cell activation, we carried out an extensive analysis of mitochondrial remodeling using a combination of conventional strategies and a novel high-resolution imaging method. We show that for 4 d following activation, mouse CD4+ T cells sustained their commitment to glycolysis facilitated by increased glucose uptake through increased expression of GLUT transporters. Despite their limited contribution to energy production, mitochondria were active and showed increased reactive oxygen species production. Moreover, prolonged activation of CD4+ T cells led to increases in mitochondrial content and volume, in the number of mitochondria per cell and in mitochondrial biogenesis. Thus, during prolonged activation, CD4+ T cells continue to obtain energy predominantly from glycolysis but also undergo extensive mitochondrial remodeling, resulting in increased mitochondrial activity.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Animais , Células Cultivadas , Metabolismo Energético , Feminino , Glicólise , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de SinaisRESUMO
Amplification of chromosome 9p24.1 targeting PD-L1, PD-L2, and JAK2 (PDJ amplicon) is present in subsets of triple negative breast cancers (TNBCs) and is associated with poor clinical outcomes. However, the prevalence of PDJ+ TNBCs varies extensively across studies applying different methods for interrogating samples of interest. To rigorously assess the prevalence of PDJ amplicons in TNBC, its prognostic value and whether it is enriched by chemotherapy, we interrogated 360 TNBC samples including 74 surgical resections from patients treated in the neoadjuvant setting, and tissue microarrays (TMAs) with 31 cases from African American women and 255 resected non-metastatic cases, with a 3 color fluorescence in situ hybridization (FISH) assay targeting the 9p24.1 PDJ amplicon, 9q24.3, and 9q34.1. Samples with mean PDJ signal of > 4.5 copies, and ratios of PDJ/9q24 ≥ 2 and/or PDJ/9q34.1 ≥ 2 were called amplified (PDJ+). Correlative analyses included the association of tumor infiltrating lymphocytes (TILs) with PDJ amplicons in TNBCs. In addition, we investigated intratumor copy number of PDJ amplicons in PDJ+ and PDJ- TNBCs. Matched pre- and post-neoadjuvant treatment biopsies were available from patients (n = 6) to evaluate the effects of therapy on PDJ status. Our study provides a rigorous analysis of the prevalence, distribution, and clinical correlatives of the PDJ amplicon in TNBC.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Hibridização in Situ Fluorescente , Prognóstico , Antígeno B7-H1/genética , Terapia Neoadjuvante , Linfócitos do Interstício Tumoral/patologia , Biomarcadores Tumorais/genéticaRESUMO
Neoantigens are tumor-specific proteins and peptides that can be highly immunogenic. Immune-mediated tumor rejection is strongly associated with cytotoxic responses to neoantigen-derived peptides in noncovalent association with self-HLA molecules. Neoantigen-based therapies, such as adoptive T cell transfer, have shown the potential to induce remission of treatment-resistant metastatic disease in select patients. Cancer vaccines are similarly designed to elicit or amplify antigen-specific T cell populations and stimulate directed antitumor immunity, but the selection and prioritization of the neoantigens remains a challenge. Bioinformatic algorithms can predict tumor neoantigens from somatic mutations, insertion-deletions, and other aberrant peptide products, but this often leads to hundreds of potential neoepitopes, all unique for that tumor. Selecting neoantigens for cancer vaccines is complicated by the technical challenges of neoepitope discovery, the diversity of HLA molecules, and intratumoral heterogeneity of passenger mutations leading to immune escape. Despite strong preclinical evidence, few neoantigen cancer vaccines tested in vivo have generated epitope-specific T cell populations, suggesting suboptimal immune system activation. In this chapter, we review factors affecting the prioritization and delivery of candidate neoantigens in the design of therapeutic and preventive cancer vaccines and consider synergism with standard chemotherapies.
Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias/genética , Humanos , Imunoterapia , Neoplasias/terapia , Peptídeos , Linfócitos T/imunologiaRESUMO
BACKGROUND: APOE4 has been hypothesized to increase Alzheimer's disease risk by increasing neuroinflammation, though the specific neuroinflammatory pathways involved are unclear. OBJECTIVE: Characterize cerebrospinal fluid (CSF) proteomic changes related to APOE4 copy number. METHODS: We analyzed targeted proteomic data from ADNI CSF samples using a linear regression model adjusting for age, sex, and APOE4 copy number, and additional linear models also adjusting for AD clinical status or for CSF Aß, tau, or p-tau levels. False discovery rate was used to correct for multiple comparisons correction. RESULTS: Increasing APOE4 copy number was associated with a significant decrease in a CRP peptide level across all five models (qâ<â0.05 for each), and with significant increases in ALDOA, CH3L1 (YKL-40), and FABPH peptide levels (qâ<â0.05 for each) except when controlling for AD clinical status or neurodegeneration biomarkers (i.e., CSF tau or p-tau). In all models except the one controlling for CSF Aß levels, though not statistically significant, there was a consistent inverse direction of association between APOE4 copy number and the levels of all 24 peptides from all 8 different complement proteins measured. The odds of this happening by chance for 24 unrelated peptides would be less than 1 in 16 million. CONCLUSION: Increasing APOE4 copy number was associated with decreased CSF CRP levels across all models, and increased CSF ALDOA, CH3L1, and FABH levels when controlling for CSF Aß levels. Increased APOE4 copy number may also be associated with decreased CSF complement pathway protein levels, a hypothesis for investigation in future studies.
Assuntos
Doença de Alzheimer , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Variações do Número de Cópias de DNA , Proteômica , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Proteína 1 Semelhante à Quitinase-3/genética , Feminino , Frutose-Bifosfato Aldolase/genética , Humanos , Masculino , Receptores Imunológicos/genéticaRESUMO
Adenosquamous cancer of the pancreas (ASCP) is a subtype of pancreatic cancer that has a worse prognosis and greater metastatic potential than the more common pancreatic ductal adenocarcinoma (PDAC) subtype. To distinguish the genomic landscape of ASCP and identify actionable targets for this lethal cancer, we applied DNA content flow cytometry to a series of 15 tumor samples including five patient-derived xenografts (PDX). We interrogated purified sorted tumor fractions from these samples with whole-genome copy-number variant (CNV), whole-exome sequencing, and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analyses. These identified a variety of somatic genomic lesions targeting chromatin regulators in ASCP genomes that were superimposed on well-characterized genomic lesions including mutations in TP53 (87%) and KRAS (73%), amplification of MYC (47%), and homozygous deletion of CDKN2A (40%) that are common in PDACs. Furthermore, a comparison of ATAC-seq profiles of three ASCP and three PDAC genomes using flow-sorted PDX models identified genes with accessible chromatin unique to the ASCP genomes, including the lysine methyltransferase SMYD2 and the pancreatic cancer stem cell regulator RORC in all three ASCPs, and a FGFR1-ERLIN2 fusion associated with focal CNVs in both genes in a single ASCP. Finally, we demonstrate significant activity of a pan FGFR inhibitor against organoids derived from the FGFR1-ERLIN2 fusion-positive ASCP PDX model. Our results suggest that the genomic and epigenomic landscape of ASCP provide new strategies for targeting this aggressive subtype of pancreatic cancer. SIGNIFICANCE: These data provide a unique description of the ASCP genomic and epigenomic landscape and identify candidate therapeutic targets for this dismal cancer.