Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(11): 5907-5912, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33348450

RESUMO

A new end-on low-spin ferric heme peroxide, [(PIm )FeIII -(O22- )]- (PIm -P), and subsequently formed hydroperoxide species, [(PIm )FeIII -(OOH)] (PIm -HP) are generated utilizing the iron-porphyrinate PIm with its tethered axial base imidazolyl group. Measured thermodynamic parameters, the ferric heme superoxide [(PIm )FeIII -(O2⋅- )] (PIm -S) reduction potential (E°') and the PIm -HP pKa value, lead to the finding of the OO-H bond-dissociation free energy (BDFE) of PIm -HP as 69.5 kcal mol-1 using a thermodynamic square scheme and Bordwell relationship. The results are validated by the observed oxidizing ability of PIm -S via hydrogen-atom transfer (HAT) compared to that of the F8 superoxide complex, [(F8 )FeIII -(O2.- )] (S) (F8 =tetrakis(2,6-difluorophenyl)porphyrinate, without an internally appended axial base imidazolyl), as determined from reactivity comparison of superoxide complexes PIm -S and S with the hydroxylamine (O-H) substrates TEMPO-H and ABNO-H.


Assuntos
Compostos Férricos/metabolismo , Heme/metabolismo , Peróxidos/metabolismo , Superóxidos/metabolismo , Termodinâmica , Compostos Férricos/química , Heme/química , Hidrogênio/química , Hidrogênio/metabolismo , Estrutura Molecular , Oxirredução , Peróxidos/química , Espectrofotometria Ultravioleta , Superóxidos/química
2.
J Am Chem Soc ; 142(6): 3104-3116, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31913628

RESUMO

Establishing redox and thermodynamic relationships between metal-ion-bound O2 and its reduced (and protonated) derivatives is critically important for a full understanding of (bio)chemical processes involving dioxygen processing. Here, a ferric heme peroxide complex, [(F8)FeIII-(O22-)]- (P) (F8 = tetrakis(2,6-difluorophenyl)porphyrinate), and a superoxide complex, [(F8)FeIII-(O2•-)] (S), are shown to be redox interconvertible. Using Cr(η-C6H6)2, an equilibrium state where S and P are present is established in tetrahydrofuran (THF) at -80 °C, allowing determination of the reduction potential of S as -1.17 V vs Fc+/0. P could be protonated with 2,6-lutidinium triflate, yielding the low-spin ferric hydroperoxide species, [(F8)FeIII-(OOH)] (HP). Partial conversion of HP back to P using a derivatized phosphazene base gave a P/HP equilibrium mixture, leading to the determination of pKa = 28.8 for HP (THF, -80 °C). With the measured reduction potential and pKa, the O-H bond dissociation free energy (BDFE) of hydroperoxide species HP was calculated to be 73.5 kcal/mol, employing the thermodynamic square scheme and Bordwell relationship. This calculated O-H BDFE of HP, in fact, lines up with an experimental demonstration of the oxidizing ability of S via hydrogen atom transfer (HAT) from TEMPO-H (2,2,6,6-tetramethylpiperdine-N-hydroxide, BDFE = 66.5 kcal/mol in THF), forming the hydroperoxide species HP and TEMPO radical. Kinetic studies carried out with TEMPO-H(D) reveal second-order behavior, kH = 0.5, kD = 0.08 M-1 s-1 (THF, -80 °C); thus, the hydrogen/deuterium kinetic isotope effect (KIE) = 6, consistent with H-atom abstraction by S being the rate-determining step. This appears to be the first case where experimentally derived thermodynamics lead to a ferric heme hydroperoxide OO-H BDFE determination, that FeIII-OOH species being formed via HAT reactivity of the partner ferric heme superoxide complex.


Assuntos
Compostos Férricos/química , Óxido Ferroso-Férrico/química , Heme/química , Peróxido de Hidrogênio/química , Superóxidos/química , Termodinâmica , Complexos de Coordenação/química
3.
Chem Rev ; 118(22): 10840-11022, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30372042

RESUMO

Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.


Assuntos
Complexos de Coordenação/síntese química , Cobre/química , Ferro/química , Oxirredutases/química , Oxirredutases/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Estrutura Molecular , Oxigênio/química , Oxigênio/metabolismo
4.
J Biol Inorg Chem ; 21(5-6): 729-43, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27350154

RESUMO

A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.


Assuntos
Cianetos/química , Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Heme/química , Óxidos de Nitrogênio/química , Ligantes , Estrutura Molecular
5.
J Porphyr Phthalocyanines ; 19(1-3): 352-360, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26056423

RESUMO

Following up on the characterization of a new (heme)FeIII-superoxide species formed from the cryogenic oxygenation of a ferrous-heme (PPy)FeII (1) (PPy = a tetraarylporphyrinate with a covalently tethered pyridine group as a potential axial base), giving (PPy)FeIII-O2•- (2) (Li Y et al., Polyhedron 2013; 58: 60-64), we report here on (i) its use in forming a cytochrome c oxidase (CcO) model compound, or (ii) in a reaction with nitrogen monoxide (•NO; nitric oxide) to mimic nitric oxide dioxygenase (NOD) chemistry. Reaction of (2) with the cuprous chelate [CuI(AN)][B(C6F5)4] (AN = bis[3-(dimethylamino) propyl]amine) gives a meta-stable product [(PPy)FeIII-([Formula: see text])-CuII(AN)][B(C6F5)4] (3a), possessing a high-spin iron(III) and Cu(II) side-on bridged peroxo moiety with a µ-η2:η2-binding motif. This complex thermally decays to a corresponding µ-oxo complex [(PPy)FeIII-(O2-)-CuII(AN)][B(C6F5)4] (3). Both (3) and (3a) have been characterized by UV-vis, 2H NMR and EPR spectroscopies. When (2) is exposed to •NO(g), a ferric heme nitrato compound forms; if 2,4-di-tert-butylphenol is added prior to •NO(g) exposure, phenol ortho-nitration occurs with the iron product being the ferric hydroxide complex (PPy) FeIII(OH) (5). The latter reactions mimic the action of NOD's.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA