Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Tissue Viability ; 31(4): 593-600, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36192303

RESUMO

OBJECTIVE: 2D Ultrasound (US) imaging has been recently investigated as a more accessible alternative to 3D Magnetic Resonance Imaging (MRI) for the estimation of soft issue motion under external mechanical loading. In the context of pressure ulcer prevention, the aim of this pilot MRI study was to design an experiment to characterize the sacral soft tissue motion under a controlled mechanical loading. Such an experiment targeted the estimation of the discrepancy between tissue motion assessed using a 2D imaging modality (echography) versus tissue motion assessed using a (reference) 3D imaging modality (MRI). METHODS: One healthy male volunteer participated in the study. An MRI-compatible custom-made setup was designed and used to load the top region of the sacrum with a 3D-printed copy of the US transducer. Five MR images were collected, one in the unloaded and four in the different loaded configurations (400-1200 [g]). Then, a 3D displacement field for each loading configuration was extracted based on the results of digital volume correlation. Tissue motion was separated into the X, Y, Z directions of the MRI coordinate system and the ratios between the out-of-plane and in-plane components were assessed for each voxel of the selected region of interest. RESULTS: Ratios between the out-of-plane and in-plane displacement components were higher than 0.6 for more than half of the voxels in the region of interest for all load cases and higher than 1 for at least quarter of the voxels when loads of 400-800 [g] were used. CONCLUSION: The out-of-ultrasound-plane tissue displacement was not negligible, therefore 2D US imaging should be used with caution for the evaluation of the tissue motion in the sacrum region. The 3D US modality should be further investigated for this application.


Assuntos
Úlcera por Pressão , Sacro , Humanos , Masculino , Sacro/diagnóstico por imagem , Úlcera por Pressão/diagnóstico por imagem , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Medição de Risco
2.
J Tissue Viability ; 31(2): 245-254, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35236613

RESUMO

BACKGROUND: Physiologic aging is associated with loss of mobility, sarcopenia, skin atrophy and loss of elasticity. These factors contribute, in the elderly, to the occurrence of a pressure ulcer (PU). Brightness mode ultrasound (US) and shear wave elastography (SWE) have been proposed as a patient-specific, bedside, and predictive tool for PU. However, reliability and clinical feasibility in application to the sacral region have not been clearly established. METHOD: The current study aimed to propose a simple bedside protocol combining US and SWE. The protocol was first tested on a group of 19 healthy young subjects by two operators. The measurements were repeated three times. Eight parameters were evaluated at the medial sacral crest. Intraclass Correlation Coefficient (ICC) was used for reliability assessment and the modified Bland Altman plot analysis for agreement assessment. The protocol was then evaluated for clinical feasibility on a healthy older group of 11 subjects with a mean age of 65 ± 2.4 yrs. FINDINGS: ICC showed poor to good reliability except for skin SWE and hypodermis thickness with an ICC (reported as: mean (95%CI)) of 0.78 (0.50-0.91) and 0.98 (0.95-0.99) respectively. No significant differences were observed between the young and older group except for the muscle Shear Wave Speed (SWS) (respectively 2.11 ± 0.27 m/s vs 1.70 ± 0.17 m/s). INTERPRETATION: This is the first protocol combining US and SWE that can be proposed on a large scale in nursing homes. Reliability, however, was unsatisfactory for most parameters despite efforts to standardize the protocol and measurement definitions. Further studies are needed to improve reliability.


Assuntos
Técnicas de Imagem por Elasticidade , Idoso , Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Estudos de Viabilidade , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Ultrassonografia/métodos , Adulto Jovem
3.
J Biomech Eng ; 142(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086518

RESUMO

Finite element analysis (FEA) is a numerical modeling tool vastly employed in research facilities to analyze and predict load transmission between the human body and a medical device, such as a prosthesis or an exoskeleton. Yet, the use of finite element modeling (FEM) in a framework compatible with clinical constraints is hindered by, among others, heavy and time-consuming assessments of material properties. Ultrasound (U.S.) imaging opens new and unique opportunities for the assessment of in vivo material properties of soft tissues. Confident of these advances, a method combining a freehand U.S. probe and a force sensor was developed in order to compute the hyperelastic constitutive parameters of the soft tissues of the thigh in both relaxed (R) and contracted (C) muscles' configurations. Seven asymptomatic subjects were included for the experiment. Two operators in each configuration performed the acquisitions. Inverse FEM allowed for the optimization of an Ogden's hyperelastic constitutive model of soft tissues of the thigh in large displacement. The mean shear modulus identified for configurations R and C was, respectively, 3.2 ± 1.3 kPa and 13.7 ± 6.5 kPa. The mean alpha parameter identified for configurations R and C was, respectively, 10 ± 1 and 9 ± 4. An analysis of variance showed that the configuration had an effect on constitutive parameters but not on the operator.


Assuntos
Análise de Elementos Finitos , Fenômenos Biomecânicos , Elasticidade , Coxa da Perna , Ultrassonografia
4.
J Foot Ankle Surg ; 57(5): 931-937, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001938

RESUMO

The initial assessment and postoperative monitoring of patients with various abnormalities of the foot in clinical routine practice is primarily based on the analysis of radiographs taken in the weightbearing position. Conventional x-ray imaging, however, only provides a 2-dimensional projection of 3-dimensional (3D) bony structures, and the clinical parameters assessed from these images can be affected by projection biases. In the present work, we addressed this issue by proposing an accurate 3D reconstruction method of the foot in the weightbearing position from low-dose biplanar radiographs with clinical index measurement assessment for clinical routine practice. The accuracy of the proposed reconstruction method was evaluated for both shape and clinical indexes by comparing 3D reconstructions of 6 cadaveric adult feet from computed tomographic images and from biplanar radiographs. For the reproducibility study, 3D reconstructions from the biplanar radiographs of the foot of 6 able-bodied subjects were considered, with 2 observers repeating each measurement of anatomic landmarks 3 times. Baseline assessment of important 3D clinical parameters was performed on 17 subjects (34 feet; mean age 27.7, range 20 to 52 years). The average point to surface distance between the 3D stereoradiographic reconstruction and the computed tomographic scan-based reconstruction was 1 mm (range 0mm to 6mm). The selected radiographic landmarks were highly reproducible (95% confidence interval <2.0 mm). The greatest interindividual variability for the clinical parameters was observed for the twisting angle (mean 87°, range 73° to 100°). Such an approach opens the way for routine 3D quantitative analysis of the foot in the weightbearing position.


Assuntos
Deformidades do Pé/diagnóstico por imagem , Deformidades do Pé/cirurgia , Imageamento Tridimensional , Tomografia Computadorizada por Raios X , Suporte de Carga , Adulto , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia , Valores de Referência , Reprodutibilidade dos Testes , Adulto Jovem
5.
Eur Spine J ; 26(8): 2112-2120, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27817139

RESUMO

PURPOSE: In addition to the sagittal alignment, impact of transverse plane parameters (TPP) and rotatory subluxation on patients reported outcomes were highlighted. One of the hypotheses for genesis of degenerative scoliosis is disc degeneration with increased axial vertebral (AVR) and intervertebral rotation (AIR). Therefore, TPP analysis at early stage of the scoliosis seems of particular interest. This study aims at assessing reliability of tridimensional (3D) reconstructions of adult spinal deformity (ASD) patients. METHODS: Thirty ASD patients underwent biplanar radiographs and were divided into two groups (Cobb angle >30° or <30°). Spinal parameters and TPP (apical AVR, AIR of upper and lower level of main curve) were measured. Four operators performed 3D reconstructions twice. Intra and inter-observer reliabilities were analyzed using ISO standard 5725-2, to quantify the global standard deviation of reproducibility (S R). RESULTS: Mean Cobb angle was 31°, mean age 55 years (70% of female). Mean values of apical AVR, upper and lower level AIR were, respectively, 16° ± 15°, 6° ± 6° and 5° ± 5°. Spinopelvic parameters S R were below 4.5°. For Cobb angle <30°, S R was 7.8°, 9.6°, 4.5° and 4.9°, respectively, for AVR apex, torsion index, upper and lower AIR. Reliability was worse in the group of patients with Cobb angle above 30°. CONCLUSIONS: 3D analysis was reliable for Cobb and sagittal parameters. 3D analysis for TPP was reproducible when Cobb is below 30°. However, uncertainty is larger for Cobb above 30°. Nevertheless, 3D reconstructions could help surgeons to anticipate onset of rotatory subluxation while assessing axial rotation evolution for small deformity and choose best delay for surgical treatment.


Assuntos
Imageamento Tridimensional/métodos , Análise Radioestereométrica/métodos , Escoliose/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos
6.
J Mech Behav Biomed Mater ; 156: 106584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810544

RESUMO

Biomechanical parameters have the potential to be used as physical markers for prevention and diagnosis. Finite Element Analysis (FEA) is a widely used tool to evaluate these parameters in vivo. However, the development of clinically relevant FEA requires personalisation of the geometry, boundary conditions, and constitutive parameters. This contribution focuses on the characterisation of mechanical properties in vivo which remains a significant challenge for the community. The aim of this retrospective study is to evaluate the sensitivity of the computed elastic parameters (shear modulus of fat and muscle tissues) derived by inverse analysis as a function of the geometrical modelling assumption (homogenised monolayer vs bilayer) and the formulation of the cost function. The methodology presented here proposes to extract the experimental force-displacement response for each tissue layer (muscle and fat) and construct the associated Finite Element Model for each volunteer, based on data previously collected in our group (N = 7 volunteers) as reported in (Fougeron et al., 2020). The sensitivity analysis indicates that the choice of the cost function has minimal impact on the topology of the response surface in the parametric space. Each surface displays a valley of parameters that minimises the cost function. The constitutive properties of the thigh (reported as median ± interquartile range) were determined to be (µ=198±322Pa,α=37) for the monolayer and (µmuscle=1675±1127Pa,αmuscle=22±14,µfat=537±1131Pa,αfat=32±7) for the bilayer. A comparison of the homogenised monolayer and bilayer models showed that adding a layer reduces the error on the local force displacement curves, increasing the accuracy of the local kinematics of soft tissues during indentation. This allows for an increased understanding of load transmission in soft tissue. The comparison of the two models in terms of strains indicates that the modelling choice significantly influences the localization of maximal compressive strains. These results support the idea that the biomechanical community should conduct further work to develop reliable methodologies for estimating in vivo strain in soft tissue.


Assuntos
Análise de Elementos Finitos , Coxa da Perna , Fenômenos Biomecânicos , Coxa da Perna/fisiologia , Humanos , Força Compressiva , Masculino , Modelos Biológicos , Adulto , Estresse Mecânico , Tecido Adiposo
7.
Prosthet Orthot Int ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38619545

RESUMO

BACKGROUND: Transmission of loads between the prosthetic socket and the residual limb is critical for the comfort and walking ability of people with transfemoral amputation. This transmission is mainly determined by the socket tightening, muscle forces, and socket ischial support. However, numerical investigations of the amputated gait, using modeling approaches such as MusculoSkeletal (MSK) modeling, ignore the weight-bearing role of the ischial support. This simplification may lead to errors in the muscle force estimation. OBJECTIVE: This study aims to propose a MSK model of the amputated gait that accounts for the interaction between the body and the ischial support for the estimation of the muscle forces of 13 subjects with unilateral transfemoral amputation. METHODS: Contrary to previous studies on the amputated gait which ignored the interaction with the ischial support, here, the contact on the ischial support was included in the external loads acting on the pelvis in a MSK model of the amputated gait. RESULTS: Including the ischial support induced an increase in the activity of the main abductor muscles, while adductor muscles' activity was reduced. These results suggest that neglecting the interaction with the ischial support leads to erroneous muscle force distribution considering the gait of people with transfemoral amputation. Although subjects with various bone geometries, particularly femur lengths, were included in the study, similar results were obtained for all subjects. CONCLUSIONS: Eventually, the estimation of muscle forces from MSK models could be used in combination with finite element models to provide quantitative data for the design of prosthetic sockets.

8.
Comput Biol Med ; 167: 107637, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897961

RESUMO

The most common surgical repair of abdominal wall hernia consists in implanting a mesh to reinforce hernia defects during the healing phase. Ultrasound shearwave elastography (SWE) is a promising non-invasive method to estimate soft tissue mechanical properties at bedside through shear wave speed (SWS) measurement. Combined with conventional ultrasonography, it could help the clinician plan surgery. In this work, a novel protocol is proposed to reliably assess the stiffness of the linea alba, and to evaluate the effect of breathing and of inflating the abdomen on SWS. Fifteen healthy adults were included. SWS was measured in the linea alba, in the longitudinal and transverse direction, during several breathing cycle and during active abdominal inflation. SWS during normal breathing was 2.3 [2.0; 2.5] m/s in longitudinal direction and 2.2 [1.9; 2.7] m/s in the transversal. Inflating the abdomen increased SWS both in longitudinal and transversal direction (3.5 [2.8; 5.8] m/s and 5.2 [3.0; 6.0] m/s, respectively). The novel protocol significantly improved the reproducibility relative to the literature (8% in the longitudinal direction and 14% in the transverse one). Breathing had a mild effect on SWS, and accounting for it only marginally improved the reproducibility. This study proved the feasibility of the method, and its potential clinical interest. Further studies on larger cohort should focus on improving our understanding of the relationship between abdominal wall properties and clinical outcomes, but also provide a cartography of the abdominal wall, beyond the linea alba.


Assuntos
Parede Abdominal , Técnicas de Imagem por Elasticidade , Hérnia Abdominal , Adulto , Humanos , Parede Abdominal/diagnóstico por imagem , Parede Abdominal/cirurgia , Técnicas de Imagem por Elasticidade/métodos , Reprodutibilidade dos Testes , Ultrassonografia
9.
J Mech Behav Biomed Mater ; 143: 105902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209595

RESUMO

Soft biological tissues demonstrate strong time-dependent and strain-rate mechanical behavior, arising from their intrinsic visco-elasticity and fluid-solid interactions. The time-dependent mechanical properties of soft tissues influence their physiological functions and are related to several pathological processes. Poro-elastic modeling represents a promising approach because it allows the integration of multiscale/multiphysics data to probe biologically relevant phenomena at a smaller scale and embeds the relevant mechanisms at the larger scale. The implementation of multiphase flow poro-elastic models however is a complex undertaking, requiring extensive knowledge. The open-source software FEniCSx Project provides a novel tool for the automated solution of partial differential equations by the finite element method. This paper aims to provide the required tools to model the mixed formulation of poro-elasticity, from the theory to the implementation, within FEniCSx. Several benchmark cases are studied. A column under confined compression conditions is compared to the Terzaghi analytical solution, using the L2-norm. An implementation of poro-hyper-elasticity is proposed. A bi-compartment column is compared to previously published results (Cast3m implementation). For all cases, accurate results are obtained in terms of a normalized Root Mean Square Error (RMSE). Furthermore, the FEniCSx computation is found three times faster than the legacy FEniCS one. The benefits of parallel computation are also highlighted.


Assuntos
Modelos Biológicos , Análise de Elementos Finitos , Viscosidade , Elasticidade , Fenômenos Biomecânicos , Estresse Mecânico
10.
J Mech Behav Biomed Mater ; 126: 104952, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906865

RESUMO

This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot's consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and loading rates from 1µm/s to 100µm/s. The cortex tissue is modeled as the porous solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretized in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group, whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to resort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics as a promising way to a unified brain tissue modeling framework in a variety of settings.


Assuntos
Líquido Extracelular , Elasticidade , Análise de Elementos Finitos , Porosidade , Viscosidade
11.
Med Eng Phys ; 105: 103829, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35781389

RESUMO

The role of the above-knee socket is to ensure the load transfer via the coupling of residual limb-prosthesis with minimal discomfort and without damaging the soft tissues. Modelling is a potential tool to predict socket fit prior to manufacture. However, state-of-the-art models only include the femur in soft tissues submitted to static loads neglecting the contribution of the hip joint. The hip joint is particularly challenging to model because it requires to compute the forces of muscles inserting on the residual limb. This work proposes a modelling of the hip joint including the estimation of muscular forces using a combined MusculoSKeletal (MSK)/Finite Element (FE) framework. An experimental-numerical approach was conducted on one femoral amputee subject. This allowed to i) model the hip joint and personalise muscular forces, ii) study the impact of the ischial support, and iii) evaluate the interface pressure. A reduction of the gluteus medius force from the MSK modelling was noticed when considering the ischial support. Interface pressure, predicted between 63 to 71 kPa, agreed with experimental literature data. The contribution of the hip joint is a key element of the modelling approach for the prediction of the socket interface pressure with the residual limb soft tissues.


Assuntos
Cotos de Amputação , Articulação do Quadril , Progressão da Doença , Fêmur , Análise de Elementos Finitos , Humanos , Extremidade Inferior
12.
Med Eng Phys ; 108: 103888, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195361

RESUMO

Pressure ulcers are a severe disease affecting patients that are bedridden or in a wheelchair bound for long periods of time. These wounds can develop in the deep layers of the skin of specific parts of the body, mostly on heels or sacrum, making them hard to detect in their early stages. Strain levels have been identified as a direct danger indicator for triggering pressure ulcers. Prevention could be possible with the implementation of subject-specific Finite Element (FE) models. However, generation and validation of such FE models is a complex task, and the current implemented techniques offer only a partial solution of the entire problem considering only external displacements and pressures, or cadaveric samples. In this paper, we propose an in vivo solution based on the 3D non-rigid registration between two Magnetic Resonance (MR) images, one in an unloaded configuration and the other deformed by means of a plate or an indenter. From the results of the image registration, the displacement field and subsequent strain maps for the soft tissues were computed. An extensive study, considering different cases (on heel pad and sacrum regions) was performed to evaluate the reproducibility and accuracy of the results obtained with this methodology. The implemented technique can give insight for several applications. It adds a useful tool for better understanding the propagation of deformations in the heel soft tissues that could generate pressure ulcers. This methodology can be used to obtain data on the material properties of the soft tissues to define constitutive laws for FE simulations and finally it offers a promising technique for validating FE models.


Assuntos
Úlcera por Pressão , Análise de Elementos Finitos , Calcanhar , Humanos , Espectroscopia de Ressonância Magnética , Pressão , Úlcera por Pressão/diagnóstico por imagem , Úlcera por Pressão/prevenção & controle , Reprodutibilidade dos Testes
13.
J Mech Behav Biomed Mater ; 136: 105426, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208581

RESUMO

Impingement with surrounding tissues is a major cause of failure of anterior cruciate ligament reconstruction. However, the complexity of the knee kinematics and anatomical variations make it difficult to predict the occurrence of contact and the extent of the resulting damage. Here we hypothesise that a description of wear between the reconstructed ligament and adjacent structures captures the in vivo damage produced with physiological loadings. To test this, we performed an in vivo study on a sheep model and investigated the role of different sources of damage: overstretching, excessive twist, excessive compression, and wear. Seven sheep underwent cranial cruciate ligament reconstruction using a tendon autograft. Necropsy observations and pull-out force measurements performed postoperatively at three months showed high variability across specimens of the extent and location of graft damage. Using 3D digital models of each stifle based on X-ray imaging and kinematics measurements, we determined the relative displacements between the graft and the surrounding bones and computed a wear index describing the work of friction forces underwent by the graft during a full flexion-extension movement. While tensile strain, angle of twist and impingement volume showed no correlation with pull-out force (ρ = -0.321, p = 0.498), the wear index showed a strong negative correlation (r = -0.902, p = 0.006). Moreover, contour maps showing the distribution of wear on the graft were consistent with the observations of damage during the necropsy. These results demonstrate that wear is a good proxy of graft damage. The proposed wear index could be used in implant design and surgery planning to minimise the risk of implant failure. Its application to sheep can provide a way to increase preclinical testing efficiency.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Animais , Ovinos , Ligamento Cruzado Anterior/diagnóstico por imagem , Articulação do Joelho/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Tendões , Radiografia , Fenômenos Biomecânicos
14.
PLoS One ; 16(7): e0254512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252146

RESUMO

Spheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation of the capsule. Here we focus on the particular case of Cellular Capsule Technology (CCT). We show in this contribution that a modeling approach accounting for the triphasic nature of the spheroid (extracellular matrix, tumor cells and interstitial fluid) offers a new perspective of analysis revealing that the pressure retrieved experimentally cannot be interpreted as a direct picture of the pressure sustained by the tumor cells and, as such, cannot therefore be used to quantify the critical pressure which induces stress-induced phenotype switch in tumor cells. The proposed multiphase reactive poro-mechanical model was cross-validated. Parameter sensitivity analyses on the digital twin revealed that the main parameters determining the encapsulated growth configuration are different from those driving growth in free condition, confirming that radically different phenomena are at play. Results reported in this contribution support the idea that multiphase reactive poro-mechanics is an exceptional theoretical framework to attain an in-depth understanding of CCT experiments, to confirm their hypotheses and to further improve their design.


Assuntos
Matriz Extracelular/química , Neoplasias/patologia , Alginatos/química , Animais , Líquido Extracelular/química , Humanos , Fenômenos Mecânicos , Neoplasias/metabolismo , Porosidade , Esferoides Celulares/citologia
15.
Comput Methods Biomech Biomed Engin ; 24(11): 1195-1205, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33427509

RESUMO

Subject-specific tensioning of ligaments is essential for the stability of the knee joint and represents a challenging aspect in the development of finite element models. We aimed to introduce and evaluate a new procedure for the quantification of ligament prestrains from biplanar X-ray and CT data. Subject-specific model evaluation was performed by comparing predicted femorotibial kinematics with the in vitro response of six cadaveric specimens. The differences obtained using personalized models were comparable to those reported in similar studies in the literature. This study is the first step toward the use of simplified, personalized knee FE models in clinical context such as ligament balancing.


Assuntos
Articulação do Joelho , Ligamentos Articulares , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Joelho , Articulação do Joelho/diagnóstico por imagem , Ligamentos , Modelos Biológicos , Amplitude de Movimento Articular
16.
J Biomech ; 122: 110464, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33932915

RESUMO

Skin Marker (SM) based motion capture is the most widespread technique used for motion analysis. Yet, the accuracy is often hindered by Soft Tissue Artifact (STA). This is a major issue in clinical gait analysis where kinematic results are used for decision-making. It also has a considerable influence on the results of rigid body and Finite Element (FE) musculoskeletal models that rely on SM-based kinematics to estimate muscle, contact and ligament forces. Current techniques devised to compensate for STA, in particular multi-body optimization methods, often consider simplified joint models. Although joint personalization with anatomical constraints has improved kinematic estimation, these models yet don't represent a fully reliable solution to the STA problem, thus allowing us to envisage an alternative approach. In this perspective, we propose to develop a conceptual FE-based model of the lower limb for STA compensation and evaluate it for 66 healthy subjects under level walking motor task. Both hip and knee joint kinematics were analyzed, considering both rotational and translational joint motion. Results showed that STA caused underestimation of the hip joint kinematics (up to 2.2°) for all rotational DoF, and overestimation of knee joint kinematics (up to 12°) except in flexion/extension. Joint kinematics, in particular the knee joint, appeared to be sensitive to soft tissue stiffness parameters (rotational and translational mean difference up to 1.5° and 3.4 mm). Analysis of the results using alternative joint representations highlighted the versatility of the proposed modeling approach. This work paves the way for using personalized models to compensate for STA in healthy subjects and different activities.


Assuntos
Artefatos , Articulação do Joelho , Fenômenos Biomecânicos , Humanos , Extremidade Inferior , Modelos Biológicos , Amplitude de Movimento Articular
17.
Orthop Traumatol Surg Res ; 106(7): 1333-1337, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32113940

RESUMO

INTRODUCTION: In children treated for idiopathic equinovarus clubfoot (EVCF), the relation between morphologic defects on clinical examination and standard X-ray on the one hand and functional abnormalities on the other is difficult to objectify. The aim of the present study was to demonstrate the feasibility of combined 3D analysis of the foot and lower limb based on biplanar EOS radiographs and gait analysis. The study hypothesis was that this provides better understanding of abnormalities in form and function. METHODS: Ten children with unilateral EVCF and "very good" clinical results were included. They underwent gait analysis on the Rizzoli Institute multisegment foot model. Kinematic data were collected for the hip, knee, ankle and foot (hindfoot/midfoot, midfoot/forefoot and hindfoot/forefoot). Biplanar EOS radiographs were taken to determine anatomic landmarks and radiological parameters. RESULTS: Complete acquisition time was around 2hours per patient. No significant differences were found between EVCF and healthy feet except for calcaneal incidence, tibiocalcaneal angle and hindfoot/midfoot and hindfoot/forefoot inversion. DISCUSSION: The feasibility of the combined analysis was confirmed. There were no differences in range of motion, moment or power between EVCF and healthy feet in this series of patients with very good results. The functional results are related to radiological results within the normal range. The protocol provided anatomic and kinematic reference data. A larger-scale study could more objectively assess the contribution of EOS radiography using optoelectronic markers. LEVEL OF EVIDENCE: II, low-power prospective study.


Assuntos
Pé Torto Equinovaro , Criança , Pé Torto Equinovaro/diagnóstico por imagem , Marcha , Humanos , Extremidade Inferior/diagnóstico por imagem , Estudos Prospectivos , Amplitude de Movimento Articular
18.
Clin Biomech (Bristol, Avon) ; 71: 92-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707190

RESUMO

BACKGROUND: Internal soft tissue strains have been shown to be one of the main factors responsible for the onset of Pressure Ulcers and to be representative of its risk of development. However, the estimation of this parameter using Finite Element (FE) analysis in clinical setups is currently hindered by costly acquisition, reconstruction and computation times. Ultrasound (US) imaging is a promising candidate for the clinical assessment of both morphological and material parameters. METHOD: The aim of this study was to investigate the ability of a local FE model of the region beneath the ischium with a limited number of parameters to capture the internal response of the gluteus region predicted by a complete 3D FE model. 26 local FE models were developed, and their predictions were compared to those of the patient-specific reference FE models in sitting position. FINDINGS: A high correlation was observed (R = 0.90, p-value < 0.01). A sensitivity analysis showed that the most influent parameters were the mechanical behaviour of the muscle tissues, the ischium morphology and the external mechanical loading. INTERPRETATION: Given the progress of US for capturing both morphological and material parameters, these results are promising because they open up the possibility to use personalised simplified FE models for risk estimation in daily clinical routine.


Assuntos
Nádegas/diagnóstico por imagem , Análise de Elementos Finitos , Músculo Esquelético/diagnóstico por imagem , Úlcera por Pressão/diagnóstico por imagem , Adulto , Força Compressiva , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Ísquio , Masculino , Modelos Biológicos , Pressão , Úlcera por Pressão/etiologia , Risco , Resistência ao Cisalhamento , Postura Sentada , Estresse Mecânico , Ultrassonografia , Adulto Jovem
20.
Biomech Model Mechanobiol ; 18(6): 1979-1986, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31222527

RESUMO

The main function of the intervertebral disc is biomechanical function, since it must resist repetitive high loadings, while giving the spine its flexibility and protecting the spinal cord from over-straining. It partially owes its mechanical characteristics to the lamellar architecture of its outer layer, the annulus fibrosus. Today, no non-invasive means exist to characterize annulus lamellar structure in vivo. The aim of this work was to test the feasibility of imaging annulus fibrosus microstructure in vivo with ultrasonography. Twenty-nine healthy adolescents were included. Ultrasonographies of L3-L4 disc were acquired with a frontal approach. Annulus fibrosus was segmented in the images to measure the thickness of the lamellae. To validate lamellar appearance in ultrasonographies, multimodality images of two cow tail discs were compared: ultrasonography, magnetic resonance and optical microscopy. In vivo average lamellar thickness was 229.7 ± 91.5 µm, and it correlated with patient body mass index and age. Lamellar appearance in the three imaging modalities in vitro was consistent. Lamellar measurement uncertainty was 7%, with good agreement between two operators. Feasibility of ultrasonography for the analysis of lumbar annulus fibrosus structure was confirmed. Further work should aim at validating measurement reliability, and to assess the relevance of the method to characterize annulus alterations, for instance in disc degeneration or scoliosis.


Assuntos
Anel Fibroso/diagnóstico por imagem , Ultrassonografia , Adolescente , Animais , Bovinos , Criança , Estudos de Viabilidade , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Masculino , Imagem Multimodal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA