Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 25(4): e12933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600522

RESUMO

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Assuntos
Autofagia , Metabolismo Energético , Humanos , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
2.
Mol Cell Proteomics ; 21(2): 100185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923141

RESUMO

Breast cancer cells that have undergone partial epithelial-mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-ß. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Frutosefosfatos , Glutamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Estresse Oxidativo , Transaminases/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768579

RESUMO

In trauma patients, shock-induced endotheliopathy (SHINE) is associated with a poor prognosis. We have previously identified four metabolic phenotypes in a small cohort of trauma patients (N = 20) and displayed the intracellular metabolic profile of the endothelial cell by integrating quantified plasma metabolomic profiles into a genome-scale metabolic model (iEC-GEM). A retrospective observational study of 99 trauma patients admitted to a Level 1 Trauma Center. Mass spectrometry was conducted on admission samples of plasma metabolites. Quantified metabolites were analyzed by computational network analysis of the iEC-GEM. Four plasma metabolic phenotypes (A-D) were identified, of which phenotype D was associated with an increased injury severity score (p < 0.001); 90% (91.6%) of the patients who died within 72 h possessed this phenotype. The inferred EC metabolic patterns were found to be different between phenotype A and D. Phenotype D was unable to maintain adequate redox homeostasis. We confirm that trauma patients presented four metabolic phenotypes at admission. Phenotype D was associated with increased mortality. Different EC metabolic patterns were identified between phenotypes A and D, and the inability to maintain adequate redox balance may be linked to the high mortality.


Assuntos
Choque , Humanos , Estudos Prospectivos , Fenótipo , Metabolômica , Células Endoteliais
4.
Planta Med ; 88(11): 891-898, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34521132

RESUMO

The lichen compound protolichesterinic acid (PA) has an anti-proliferative effect against several cancer cell lines of different origin. This effect cannot be explained by the known inhibitory activity of PA against 5- and 12-lipoxygenases. The aim was therefore to search for mechanisms for the anti-proliferative activity of PA. Two cancer cell lines of different origin, both sensitive to anti-proliferative effects of PA, were selected for this study, T-47D from breast cancer and AsPC-1 from pancreatic cancer. Morphological changes were assessed by transmission electron microscopy, HPLC coupled with TOF spectrometry was used for metabolomics, mitochondrial function was measured using the Agilent Seahorse XFp Real-time ATP assay and glucose/lactate levels by radiometry. Levels of glutathione, NADP/NADPH and reactive oxygen species [ROS] were measured by luminescence. Following exposure to PA both cell lines showed structural changes in mitochondria that were in line with a measured reduction in oxidative phosphorylation and increased glycolysis. These changes were more marked in T-47D, which had poorer mitochondrial function at baseline. PA was processed and expelled from the cells via the mercapturic pathway, which consumes glutathione. Nevertheless, glutathione levels were increased after 24 hours of exposure to PA, implying enhanced synthesis. Redox balance was not much affected and ROS levels were not increased. We conclude that PA is metabolically processed and expelled from cells, leading indirectly to increased glutathione levels with minimal effects on redox balance. The most marked effect was on mitochondrial structure and metabolic function implying that effects of PA may depend on mitochondrial fitness.


Assuntos
Líquens , Neoplasias , 4-Butirolactona/análogos & derivados , Proliferação de Células , Glutationa/metabolismo , Líquens/química , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Mol Sci ; 23(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35682894

RESUMO

BACKGROUND: The endotheliopathy of trauma (EoT) is associated with increased mortality following injury. Herein, we describe the plasma proteome related to EoT in order to provide insight into the role of the endothelium within the systemic response to trauma. METHODS: 99 subjects requiring the highest level of trauma activation were included in the study. Enzyme-linked immunosorbent assays of endothelial and catecholamine biomarkers were performed on admission plasma samples, as well as untargeted proteome quantification utilizing high-performance liquid chromatography and tandem mass spectrometry. RESULTS: Plasma endothelial and catecholamine biomarker abundance was elevated in EoT. Patients with EoT (n = 62) had an increased incidence of death within 24 h at 21% compared to 3% for non-EoT (n = 37). Proteomic analysis revealed that 52 out of 290 proteins were differentially expressed between the EoT and non-EoT groups. These proteins are involved in endothelial activation, coagulation, inflammation, and oxidative stress, and include known damage-associated molecular patterns (DAMPs) and intracellular proteins specific to several organs. CONCLUSIONS: We report a proteomic profile of EoT suggestive of a surge of DAMPs and inflammation driving nonspecific activation of the endothelial, coagulation, and complement systems with subsequent end-organ damage and poor clinical outcome. These findings support the utility of EoT as an index of cellular injury and delineate protein candidates for therapeutic intervention.


Assuntos
Proteoma , Proteômica , Biomarcadores , Catecolaminas , Humanos , Inflamação , Estudos Prospectivos
6.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328583

RESUMO

Disruption to endothelial cell homeostasis results in an extensive variety of human pathologies that are particularly relevant to major trauma. Circulating catecholamines, such as adrenaline and noradrenaline, activate endothelial adrenergic receptors triggering a potent response in endothelial function. The regulation of the endothelial cell metabolism is distinct and profoundly important to endothelium homeostasis. However, a precise catalogue of the metabolic alterations caused by sustained high catecholamine levels that results in endothelial dysfunction is still underexplored. Here, we uncover a set of up to 46 metabolites that exhibit a dose-response relationship to adrenaline-noradrenaline equimolar treatment. The identified metabolites align with the glutathione-ascorbate cycle and the nitric oxide biosynthesis pathway. Certain key metabolites, such as arginine and reduced glutathione, displayed a differential response to treatment in early (4 h) compared to late (24 h) stages of sustained stimulation, indicative of homeostatic metabolic feedback loops. Furthermore, we quantified an increase in the glucose consumption and aerobic respiration in endothelial cells upon catecholamine stimulation. Our results indicate that oxidative stress and nitric oxide metabolic pathways are downstream consequences of endothelial cell stimulation with sustained high levels of catecholamines. A precise understanding of the metabolic response in endothelial cells to pathological levels of catecholamines will facilitate the identification of more efficient clinical interventions in trauma patients.


Assuntos
Catecolaminas , Óxido Nítrico , Permeabilidade Capilar , Catecolaminas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Epinefrina/metabolismo , Epinefrina/farmacologia , Humanos , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia
7.
BMC Bioinformatics ; 21(1): 130, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245365

RESUMO

BACKGROUND: New technologies have given rise to an abundance of -omics data, particularly metabolomic data. The scale of these data introduces new challenges for the interpretation and extraction of knowledge, requiring the development of innovative computational visualization methodologies. Here, we present GEM-Vis, an original method for the visualization of time-course metabolomic data within the context of metabolic network maps. We demonstrate the utility of the GEM-Vis method by examining previously published data for two cellular systems-the human platelet and erythrocyte under cold storage for use in transfusion medicine. RESULTS: The results comprise two animated videos that allow for new insights into the metabolic state of both cell types. In the case study of the platelet metabolome during storage, the new visualization technique elucidates a nicotinamide accumulation that mirrors that of hypoxanthine and might, therefore, reflect similar pathway usage. This visual analysis provides a possible explanation for why the salvage reactions in purine metabolism exhibit lower activity during the first few days of the storage period. The second case study displays drastic changes in specific erythrocyte metabolite pools at different times during storage at different temperatures. CONCLUSIONS: The new visualization technique GEM-Vis introduced in this article constitutes a well-suitable approach for large-scale network exploration and advances hypothesis generation. This method can be applied to any system with data and a metabolic map to promote visualization and understand physiology at the network level. More broadly, we hope that our approach will provide the blueprints for new visualizations of other longitudinal -omics data types. The supplement includes a comprehensive user's guide and links to a series of tutorial videos that explain how to prepare model and data files, and how to use the software SBMLsimulator in combination with further tools to create similar animations as highlighted in the case studies.


Assuntos
Redes e Vias Metabólicas , Metabolômica/métodos , Plaquetas/metabolismo , Eritrócitos/metabolismo , Humanos , Metaboloma
8.
Lab Invest ; 100(7): 928-944, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32203150

RESUMO

The tumor microenvironment is increasingly recognized as key player in cancer progression. Investigating heterotypic interactions between cancer cells and their microenvironment is important for understanding how specific cell types support cancer. Forming the vasculature, endothelial cells (ECs) are a prominent cell type in the microenvironment of both normal and neoplastic breast gland. Here, we sought out to analyze epithelial-endothelial cross talk in the breast using isogenic non-tumorigenic vs. tumorigenic breast epithelial cell lines and primary ECs. The cellular model used here consists of D492, a breast epithelial cell line with stem cell properties, and two isogenic D492-derived EMT cell lines, D492M and D492HER2. D492M was generated by endothelial-induced EMT and is non-tumorigenic while D492HER2 is tumorigenic, expressing the ErbB2/HER2 oncogene. To investigate cellular cross talk, we used both conditioned medium (CM) and 2D/3D co-culture systems. Secretome analysis of D492 cell lines was performed using mass spectrometry and candidate knockdown (KD), and overexpression (OE) was done using siRNA and CRISPRi/CRISPRa technology. D492HER2 directly enhances endothelial network formation and activates a molecular axis in ECs promoting D492HER2 migration and invasion, suggesting an endothelial feedback response. Secretome analysis identified extracellular matrix protein 1 (ECM1) as potential angiogenic inducer in D492HER2. Confirming its involvement, KD of ECM1 reduced the ability of D492HER2-CM to increase endothelial network formation and induce the endothelial feedback, while recombinant ECM1 (rECM1) increased both. Interestingly, NOTCH1 and NOTCH3 expression was upregulated in ECs upon treatment with D492HER2-CM or rECM1 but not by CM from D492HER2 with ECM1 KD. Blocking endothelial NOTCH signaling inhibited the increase in network formation and the ability of ECs to promote D492HER2 migration and invasion. In summary, our data demonstrate that cancer-secreted ECM1 induces a NOTCH-mediated endothelial feedback promoting cancer progression by enhancing migration and invasion. Targeting this interaction may provide a novel possibility to improve cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Invasividade Neoplásica/genética , Receptor ErbB-2/metabolismo , Microambiente Tumoral/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Receptor ErbB-2/genética
9.
Ann Surg ; 272(6): 1140-1148, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31274658

RESUMO

OBJECTIVE: Investigate the endothelial cell phenotype (s) that causes Shock-Induced Endotheliopathy in trauma. BACKGROUND: We have studied more than 2750 trauma patients and identified that patients with high circulating syndecan-1 (endothelial glycocalyx damage marker) in plasma have an increased mortality rate compared with patients with lower levels. Notably, we found that patients suffering from the same trauma severity could develop significantly different degrees of endothelial dysfunction as measured by syndecan-1. METHODS: Prospective observational study of 20 trauma patients admitted to a Level 1 Trauma Centre and 20 healthy controls. Admission plasma syndecan-1 level and mass spectrometry were measured and analyzed by computational network analysis of our genome-scale metabolic model of the microvascular endothelial cell function. RESULTS: Trauma patients had a significantly different endothelial metabolic profile compared with controls. Among the patients, 4 phenotypes were identified. Three phenotypes were independent of syndecan-1 levels. We developed genome-scale metabolic models representative of the observed phenotypes. Within these phenotypes, we observed differences in the cell fluxes from glucose and palmitate to produce Acetyl-CoA, and secretion of heparan sulfate proteoglycan (component of syndecan-1). CONCLUSIONS: We confirm that trauma patients have a significantly different metabolic profile compared with controls. A minimum of 4 shock-induced endotheliopathy phenotypes were identified, which were independent of syndecan-1level (except 1 phenotype) verifying that the endothelial response to trauma is heterogeneous and most likely driven by a genetic component. Moreover, we introduced a new research tool in trauma by using metabolic systems biology, laying the foundation for personalized medicine.


Assuntos
Endotélio Vascular , Choque/complicações , Choque/metabolismo , Sindecana-1/sangue , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo , Ferimentos e Lesões/complicações , Adulto , Pesquisa Biomédica , Células Endoteliais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Choque/sangue , Doenças Vasculares/sangue , Ferimentos e Lesões/sangue
10.
Transfusion ; 60(2): 367-377, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31802514

RESUMO

BACKGROUND: The risk of bacterial contamination and the deterioration of platelet (PLT) quality limit the shelf-life of platelet concentrates (PCs). The INTERCEPT pathogen inactivation system reduces the risk of pathogen transmission by inhibiting nucleic acid replication using a combination of a photo-reactive compound and UVA illumination. The goal of this study was to investigate the effects the INTERCEPT system has on the PLT metabolome and metabolic activity. STUDY DESIGN AND METHODS: Paired units of buffy coat-derived PCs were generated using a pool and split strategy (n = 8). The paired PCs were either treated with the INTERCEPT system or left untreated. Samples were collected on Days 1, 2, 4, and 7 of storage. Ultra-performance chromatography coupled with time-of-flight mass spectrometry was used to analyze the extra- and intracellular metabolomes. Constraint-based metabolic modeling was then used to predict the metabolic activity of the stored PLTs. RESULTS: A relatively large number of metabolites in the extracellular environment were depleted during the processing steps of the INTERCEPT system, in particular, metabolites with hydrophobic functional groups, including acylcarnitines and lysophosphatidylcholines. In the intracellular environment, alterations in glucose and glycerophospholipid metabolism and decreased levels of 2-hydroxyglutarate were observed following the INTERCEPT treatment. Untargeted metabolomics analysis revealed residual amotosalen dimers present in the treated PCs. Systems-level analysis of PLT metabolism indicated that the INTERCEPT system does not have a significant impact on the PLT energy metabolism and nutrient utilization. CONCLUSIONS: The INTERCEPT system significantly alters the metabolome of the stored PCs without significantly influencing PLT energy metabolism.


Assuntos
Preservação de Sangue/métodos , Furocumarinas/farmacologia , Metabolômica/métodos , Raios Ultravioleta , Metabolismo Energético
11.
Respir Res ; 20(1): 129, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234850

RESUMO

BACKGROUND: Azithromycin (Azm) is a macrolide recognized for its disease-modifying effects and reduction in exacerbation of chronic airway diseases. It is not clear whether the beneficial effects of Azm are due to its anti-microbial activity or other pharmacological actions. We have shown that Azm affects the integrity of the bronchial epithelial barrier measured by increased transepithelial electrical resistance. To better understand these effects of Azm on bronchial epithelia we have investigated global changes in gene expression. METHODS: VA10 bronchial epithelial cells were treated with Azm and cultivated in air-liquid interface conditions for up to 22 days. RNA was isolated at days 4, 10 and 22 and analyzed using high-throughput RNA sequencing. qPCR and immunostaining were used to confirm key findings from bioinformatic analyses. Detailed assessment of cellular changes was done using microscopy, followed by characterization of the lipidomic profiles of the multivesicular bodies present. RESULTS: Bioinformatic analysis revealed that after 10 days of treatment genes encoding effectors of sterol and cholesterol metabolism were prominent. Interestingly, expression of genes associated with epidermal barrier differentiation, KRT1, CRNN, SPINK5 and DSG1, increased significantly at day 22. Together with immunostaining, these results suggest an epidermal differentiation pattern. We also found that Azm induced the formation of multivesicular and lamellar bodies in two different airway epithelial cell lines. Lipidomic analysis revealed that Azm was entrapped in multivesicular bodies linked to different types of lipids, most notably palmitate and stearate. Furthermore, targeted analysis of lipid species showed accumulation of phosphatidylcholines, as well as ceramide derivatives. CONCLUSIONS: Taken together, we demonstrate how Azm might confer its barrier enhancing effects, via activation of epidermal characteristics and changes to intracellular lipid dynamics. These effects of Azm could explain the unexpected clinical benefit observed during Azm-treatment of patients with various lung diseases affecting barrier function.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Corpos Multivesiculares/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Epiderme/metabolismo , Humanos , Corpos Multivesiculares/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo
12.
Transfusion ; 59(12): 3727-3735, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31674051

RESUMO

BACKGROUND: To reduce the risk of transfusion transmission infection, nucleic acid targeted methods have been developed to inactivate pathogens in PCs. miRNAs have been shown to play an important role in platelet function, and changes in the abundance of specific miRNAs during storage have been observed, as have perturbation effects related to pathogen inactivation (PI) methods. The aim of this work was to investigate the effects of PI on selected miRNAs during storage. STUDY DESIGN AND METHODS: Using a pool and split strategy, 3 identical buffy coat PC units were generated from a pool of 24 whole blood donors. Each unit received a different treatment: 1) Untreated platelet control in platelet additive solution (C-PAS); 2) Amotosalen-UVA-treated platelets in PAS (PI-PAS); and 3) untreated platelets in donor plasma (U-PL). PCs were stored for 7 days under standard blood banking conditions. Standard platelet quality control (QC) parameters and 25 selected miRNAs were analyzed. RESULTS: During the 7-day storage period, differences were found in several QC parameters relating to PI treatment and storage in plasma, but overall the three treatments were comparable. Out of 25 miRNA tested changes in regulation of 5 miRNA in PI-PAS and 3 miRNA U-PL where detected compared to C-PAS. A statistically significant difference was observed in down regulations miR-96-5p on Days 2 and 4, 61.9% and 61.8%, respectively, in the PI-PAS treatment. CONCLUSION: Amotosalen-UVA treatment does not significantly alter the miRNA profile of platelet concentrates generated and stored using standard blood banking conditions.


Assuntos
Bancos de Sangue , Plaquetas/efeitos dos fármacos , Plaquetas/efeitos da radiação , Furocumarinas/farmacologia , MicroRNAs/metabolismo , Raios Ultravioleta , Plaquetas/metabolismo , Preservação de Sangue/métodos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase
13.
Microb Cell Fact ; 18(1): 209, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791335

RESUMO

BACKGROUND: Diatoms, which can accumulate large amounts of carotenoids, are a major group of microalgae and the dominant primary producer in marine environments. Phaeodactylum tricornutum, a model diatom species, acquires little silicon for its growth although silicon is known to contribute to gene regulation and play an important role in diatom intracellular metabolism. In this study, we explored the effects of artificial high-silicate medium (i.e. 3.0 mM sodium metasilicate) and LED illumination conditions on the growth rate and pigment accumulation in P. tricornutum, which is the only known species so far that can grow without silicate. It's well known that light-emitting diodes (LEDs) as novel illuminants are emerging to be superior monochromatic light sources for algal cultivation with defined and efficient red and blue lights. RESULTS: Firstly, we cultivated P. tricornutum in a synthetic medium supplemented with either 0.3 mM or 3.0 mM silicate. The morphology and size of diatom cells were examined: the proportion of the oval and triradiate cells decreased while the fusiform cells increased with more silicate addition in high-silicate medium; the average length of fusiform cells also slightly changed from 14.33 µm in 0.3 mM silicate medium to 12.20 µm in 3.0 mM silicate medium. Then we cultivated P. tricornutum under various intensities of red light in combination with the two different levels of silicate in the medium. Higher biomass productivity also achieved in 3.0 mM silicate medium than in 0.3 mM silicate medium under red LED light irradiation at 128 µmol/m2/s or higher light intensity. Increasing silicate reversed the down-regulation of fucoxanthin and chlorophyll a under high red-light illumination (i.e. 255 µmol/m2/s). When doubling the light intensity, fucoxanthin content decreased under red light but increased under combined red and blue (50:50) lights while chlorophyll a content reduced under both conditions. Fucoxanthin accumulation and biomass productivity increased with enhanced red and blue (50:50) lights. CONCLUSION: High-silicate medium and blue light increased biomass and fucoxanthin production in P. tricornutum under high light conditions and this strategy may be beneficial for large-scale production of fucoxanthin in diatoms.


Assuntos
Carotenoides/metabolismo , Diatomáceas/metabolismo , Luz , Silicatos/metabolismo , Carotenoides/química , Diatomáceas/química , Silicatos/química
14.
Biochem J ; 475(13): 2225-2240, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29914982

RESUMO

Platelets (PLTs) deteriorate over time when stored within blood banks through a biological process known as PLT storage lesion (PSL). Here, we describe the refinement of the biochemical model of PLT metabolism, iAT-PLT-636, and its application to describe and investigate changes in metabolism during PLT storage. Changes in extracellular acetate and citrate were measured in buffy coat and apheresis PLT units over 10 days of storage in the PLT additive solution T-Sol. Metabolic network analysis of these data was performed alongside our prior metabolomics data to describe the metabolism of fresh (days 1-3), intermediate (days 4-6), and expired (days 7-10) PLTs. Changes in metabolism were studied by comparing metabolic model flux predictions of iAT-PLT-636 between stages and between collection methods. Extracellular acetate and glucose contribute most to central carbon metabolism in PLTs. The anticoagulant citrate is metabolized in apheresis-stored PLTs and is converted into aconitate and, to a lesser degree, malate. The consumption of nutrients changes during storage and reflects altered PLT activation profiles following their collection. Irrespective of the collection method, a slowdown in oxidative phosphorylation takes place, consistent with mitochondrial dysfunction during PSL. Finally, the main contributors to intracellular ammonium and NADPH are highlighted. Future optimization of flux through these pathways provides opportunities to address intracellular pH changes and reactive oxygen species, which are both of importance to PSL. The metabolic models provide descriptions of PLT metabolism at steady state and represent a platform for future PLT metabolic research.


Assuntos
Plaquetas/metabolismo , Preservação de Sangue , Metaboloma , Metabolômica , Ácido Aconítico/metabolismo , Amônia/metabolismo , Plaquetas/citologia , Ácido Cítrico/metabolismo , Humanos , Soluções Farmacêuticas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
15.
J Biol Chem ; 292(48): 19556-19564, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030425

RESUMO

The temperature dependence of biological processes has been studied at the levels of individual biochemical reactions and organism physiology (e.g. basal metabolic rates) but has not been examined at the metabolic network level. Here, we used a systems biology approach to characterize the temperature dependence of the human red blood cell (RBC) metabolic network between 4 and 37 °C through absolutely quantified exo- and endometabolomics data. We used an Arrhenius-type model (Q10) to describe how the rate of a biochemical process changes with every 10 °C change in temperature. Multivariate statistical analysis of the metabolomics data revealed that the same metabolic network-level trends previously reported for RBCs at 4 °C were conserved but accelerated with increasing temperature. We calculated a median Q10 coefficient of 2.89 ± 1.03, within the expected range of 2-3 for biological processes, for 48 individual metabolite concentrations. We then integrated these metabolomics measurements into a cell-scale metabolic model to study pathway usage, calculating a median Q10 coefficient of 2.73 ± 0.75 for 35 reaction fluxes. The relative fluxes through glycolysis and nucleotide metabolism pathways were consistent across the studied temperature range despite the non-uniform distributions of Q10 coefficients of individual metabolites and reaction fluxes. Together, these results indicate that the rate of change of network-level responses to temperature differences in RBC metabolism is consistent between 4 and 37 °C. More broadly, we provide a baseline characterization of a biochemical network given no transcriptional or translational regulation that can be used to explore the temperature dependence of metabolism.


Assuntos
Eritrócitos/metabolismo , Metabolômica/métodos , Temperatura , Glicólise , Humanos , Técnicas In Vitro
16.
Blood ; 128(13): e43-50, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27554084

RESUMO

Metabolomic investigations of packed red blood cells (RBCs) stored under refrigerated conditions in saline adenine glucose mannitol (SAGM) additives have revealed the presence of 3 distinct metabolic phases, occurring on days 0-10, 10-18, and after day 18 of storage. Here we used receiving operating characteristics curve analysis to identify biomarkers that can differentiate between the 3 metabolic states. We first recruited 24 donors and analyzed 308 samples coming from RBC concentrates stored in SAGM and additive solution 3. We found that 8 extracellular compounds (lactic acid, nicotinamide, 5-oxoproline, xanthine, hypoxanthine, glucose, malic acid, and adenine) form the basis for an accurate classification/regression model and are able to differentiate among the metabolic phases. This model was then validated by analyzing an additional 49 samples obtained by preparing 7 new RBC concentrates in SAGM. Despite the technical variability associated with RBC processing strategies, verification of these markers was independently confirmed in 2 separate laboratories with different analytical setups and different sample sets. The 8 compounds proposed here highly correlate with the metabolic age of packed RBCs, and can be prospectively validated as biomarkers of the RBC metabolic lesion.


Assuntos
Biomarcadores/sangue , Preservação de Sangue/métodos , Eritrócitos/citologia , Eritrócitos/metabolismo , Adulto , Temperatura Baixa , Envelhecimento Eritrocítico/fisiologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Metaboloma , Pessoa de Meia-Idade , Modelos Biológicos , Estudos Prospectivos , Análise de Regressão , Fatores de Tempo , Adulto Jovem
17.
Mar Drugs ; 16(8)2018 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30081564

RESUMO

Diatoms are a major group of unicellular algae that are rich in lipids and carotenoids. However, sustained research efforts are needed to improve the strain performance for high product yields towards commercialization. In this study, we generated a number of mutants of the model diatom Phaeodactylum tricornutum, a cosmopolitan species that has also been found in Nordic region, using the chemical mutagens ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (NTG). We found that both chlorophyll a and neutral lipids had a significant correlation with carotenoid content and these correlations were better during exponential growth than in the stationary growth phase. Then, we studied P. tricornutum common metabolic pathways and analyzed correlated enzymatic reactions between fucoxanthin synthesis and pigmentation or lipid metabolism through a genome-scale metabolic model. The integration of the computational results with liquid chromatography-mass spectrometry data revealed key compounds underlying the correlative metabolic pathways. Approximately 1000 strains were screened using fluorescence-based high-throughput method and five mutants selected had 33% or higher total carotenoids than the wild type, in which four strains remained stable in the long term and the top mutant exhibited an increase of 69.3% in fucoxanthin content compared to the wild type. The platform described in this study may be applied to the screening of other high performing diatom strains for industrial applications.


Assuntos
Organismos Aquáticos/genética , Carotenoides/biossíntese , Diatomáceas/genética , Redes e Vias Metabólicas/genética , Mutagênese/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Clorofila/biossíntese , Clorofila A , Cromatografia Líquida , Diatomáceas/metabolismo , Metanossulfonato de Etila/toxicidade , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Metilnitronitrosoguanidina/toxicidade
18.
Transfusion ; 57(11): 2665-2676, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28833234

RESUMO

BACKGROUND: Alternate sugar metabolism during red blood cell (RBC) storage is not well understood. Here we report fructose and mannose metabolism in RBCs during cold storage in SAGM and the impact that these monosaccharides have on metabolic biomarkers of RBC storage lesion. STUDY DESIGN AND METHODS: RBCs were stored in SAGM containing uniformly labeled 13 C-fructose or 13 C-mannose at 9 or 18 mmol/L concentration for 25 days. RBCs and media were sampled at 14 time points during storage and analyzed using ultraperformance liquid chromatography-mass spectrometry. Blood banking quality assurance measurements were performed. RESULTS: Red blood cells incorporated fructose and mannose during cold storage in the presence of glucose. Mannose was metabolized in preference to glucose via glycolysis. Fructose lowered adenosine triphosphate (ATP) levels and contributed little to ATP maintenance when added to SAGM. Both monosaccharides form the advanced glycation end product glycerate. Mannose activates enzymes in the RBC that take part in glycan synthesis. CONCLUSIONS: Fructose or mannose addition to RBC SAGM concentrates may not offset the shift in metabolism of RBCs that occurs after 10 days of storage. Fructose and mannose metabolism at 4°C in SAGM reflects their metabolism at physiologic temperature. Glycerate excretion is a measure of protein deglycosylation activity in stored RBCs. No cytoprotective effect was observed upon the addition of either fructose or mannose to SAGM.


Assuntos
Criopreservação , Eritrócitos/metabolismo , Frutose/metabolismo , Manose/metabolismo , Isótopos de Carbono/metabolismo , Cromatografia Líquida , Ácidos Glicéricos/análise , Glicosilação , Humanos , Espectrometria de Massas , Fatores de Tempo
19.
PLoS Comput Biol ; 12(6): e1004924, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27253373

RESUMO

Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Receptor Cross-Talk/fisiologia , Linhagem Celular , Simulação por Computador , Humanos , Transdução de Sinais/fisiologia
20.
Transfusion ; 56(10): 2538-2547, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27491795

RESUMO

BACKGROUND: Red blood cells (RBCs) are routinely stored and transfused worldwide. Recently, metabolomics have shown that RBCs experience a three-phase metabolic decay process during storage, resulting in the definition of three distinct metabolic phenotypes, occurring between Days 1 and 10, 11 and 17, and 18 and 46. Here we use metabolomics and stable isotope labeling analysis to study adenine metabolism in RBCs. STUDY DESIGN AND METHODS: A total of 6 units were prepared in SAGM or modified additive solutions (ASs) containing 15 N5 -adenine. Three of them were spiked with 15 N5 -adenine on Days 10, 14, and 17 during storage. Each unit was sampled 10 times spanning Day 1 to Day 32. At each time point metabolic profiling was performed. RESULTS: We increased adenine concentration in the AS and we pulsed the adenine concentration during storage and found that in both cases the RBCs' main metabolic pathways were not affected. Our data clearly show that RBCs cannot consume adenine after 18 days of storage, even if it is still present in the storage solution. However, increased levels of adenine influenced S-adenosylmethionine metabolism. CONCLUSION: In this work, we have studied in detail the metabolic fate of adenine during RBC storage in SAGM. Adenine is one of the main substrates used by RBCs, but the metabolic shift observed during storage is not caused by an absence of adenine later in storage. The rate of adenine consumption strongly correlated with duration of storage but not with the amount of adenine present in the AS.


Assuntos
Adenina/metabolismo , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Glucose , Manitol , Cloreto de Sódio , Humanos , Marcação por Isótopo , Metabolômica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA