Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 73(4): 775-787.e10, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30642763

RESUMO

Little information is available about how post-transcriptional mechanisms regulate the aging process. Here, we show that the RNA-binding protein Pumilio2 (PUM2), which is a translation repressor, is induced upon aging and acts as a negative regulator of lifespan and mitochondrial homeostasis. Multi-omics and cross-species analyses of PUM2 function show that it inhibits the translation of the mRNA encoding for the mitochondrial fission factor (Mff), thereby impairing mitochondrial fission and mitophagy. This mechanism is conserved in C. elegans by the PUM2 ortholog PUF-8. puf-8 knock-down in old nematodes and Pum2 CRISPR/Cas9-mediated knockout in the muscles of elderly mice enhances mitochondrial fission and mitophagy in both models, hence improving mitochondrial quality control and tissue homeostasis. Our data reveal how a PUM2-mediated layer of post-transcriptional regulation links altered Mff translation to mitochondrial dynamics and mitophagy, thereby mediating age-related mitochondrial dysfunctions.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Proteínas de Ligação a RNA/metabolismo , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Regulação para Cima
2.
Nature ; 552(7684): 187-193, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29211722

RESUMO

Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-ß peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-ß proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-ß proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-ß proteotoxic diseases, such as Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Homeostase , Mitocôndrias/metabolismo , Proteostase , Doença de Alzheimer/genética , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Humanos , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/genética , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fosforilação Oxidativa , Agregação Patológica de Proteínas/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Compostos de Piridínio , Resposta a Proteínas não Dobradas/genética
3.
J Lipid Res ; 60(4): 741-746, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782960

RESUMO

Niacin, the first antidyslipidemic drug, has been at the center stage of lipid research for many decades before the discovery of statins. However, to date, despite its remarkable effects on lipid profiles, the clinical outcomes of niacin treatment on cardiac events is still debated. In addition to its historically well-defined interactions with central players of lipid metabolism, niacin can be processed by eukaryotic cells to synthesize a crucial cofactor, NAD+ NAD+ acts as a cofactor in key cellular processes, including oxidative phosphorylation, glycolysis, and DNA repair. More recently, evidence has emerged that NAD+ also is an essential cosubstrate for the sirtuin family of protein deacylases and thereby has an impact on a wide range of cellular processes, most notably mitochondrial homeostasis, energy homeostasis, and lipid metabolism. NAD+ achieves these remarkable effects through sirtuin-mediated deacetylation of key transcriptional regulators, such as peroxisome proliferator-activated receptor gamma coactivator 1-α, LXR, and SREBPs, that control these cellular processes. Here, we present an alternative point of view to explain niacin's mechanism of action, with a strong focus on the importance of how this old drug acts as a control switch of NAD+/sirtuin-mediated control of metabolism.


Assuntos
Hipolipemiantes/farmacologia , NAD/efeitos dos fármacos , Niacina/farmacologia , Animais , Humanos , Hipolipemiantes/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Estrutura Molecular , NAD/metabolismo , Niacina/química
4.
Biomed Pharmacother ; 171: 116075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183742

RESUMO

Lysyl oxidases (LOX(L)) are enzymes that catalyze the formation of cross-links in collagen and elastin fibers during physiologic calcification of bone. However, it remains unknown whether they may promote pathologic calcification of articular cartilage, an important hallmark of debilitating arthropathies. Here, we have studied the possible roles of LOX(L) in cartilage calcification, related and not related to their cross-linking activity. We first demonstrated that inhibition of LOX(L) by ß-aminoproprionitrile (BAPN) significantly reduced calcification in murine and human chondrocytes, and in joint of meniscectomized mice. These BAPN's effects on calcification were accounted for by different LOX(L) roles. Firstly, reduced LOX(L)-mediated extracellular matrix cross-links downregulated Anx5, Pit1 and Pit2 calcification genes. Secondly, BAPN reduced collagen fibrotic markers Col1 and Col3. Additionally, LOX(L) inhibition blocked chondrocytes hypertrophic differentiation (Runx2 and COL10), pro-inflammatory IL-6 release and reactive oxygen species (ROS) production, all triggers of chondrocyte calcification. Through unbiased transcriptomic analysis we confirmed a positive correlation between LOX(L) genes and genes for calcification, hypertrophy and extracellular matrix catabolism. This association was conserved throughout species (mouse, human) and tissues that can undergo pathologic calcification (kidney, arteries, skin). Overall, LOX(L) play a critical role in the process of chondrocyte calcification and may be therapeutic targets to treat cartilage calcification in arthropathies.


Assuntos
Calcinose , Cartilagem Articular , Artropatias , Camundongos , Humanos , Animais , Proteína-Lisina 6-Oxidase/metabolismo , Aminopropionitrilo , Colágeno/metabolismo , Calcinose/patologia , Condrócitos/metabolismo , Hipertrofia , Cartilagem Articular/metabolismo
5.
Sci Transl Med ; 15(696): eade6509, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196064

RESUMO

Disruption of mitochondrial function and protein homeostasis plays a central role in aging. However, how these processes interact and what governs their failure in aging remain poorly understood. Here, we showed that ceramide biosynthesis controls the decline in mitochondrial and protein homeostasis during muscle aging. Analysis of transcriptome datasets derived from muscle biopsies obtained from both aged individuals and patients with a diverse range of muscle disorders revealed that changes in ceramide biosynthesis, as well as disturbances in mitochondrial and protein homeostasis pathways, are prevalent features in these conditions. By performing targeted lipidomics analyses, we found that ceramides accumulated in skeletal muscle with increasing age across Caenorhabditis elegans, mice, and humans. Inhibition of serine palmitoyltransferase (SPT), the rate-limiting enzyme of the ceramide de novo synthesis, by gene silencing or by treatment with myriocin restored proteostasis and mitochondrial function in human myoblasts, in C. elegans, and in the skeletal muscles of mice during aging. Restoration of these age-related processes improved health and life span in the nematode and muscle health and fitness in mice. Collectively, our data implicate pharmacological and genetic suppression of ceramide biosynthesis as potential therapeutic approaches to delay muscle aging and to manage related proteinopathies via mitochondrial and proteostasis remodeling.


Assuntos
Resistência à Insulina , Proteostase , Camundongos , Humanos , Animais , Idoso , Caenorhabditis elegans , Músculo Esquelético/metabolismo , Ceramidas/metabolismo , Mitocôndrias/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Envelhecimento
6.
Nutrients ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276842

RESUMO

With extended life expectancy, the older population is constantly increasing, and consequently, so too is the prevalence of age-related disorders. Sarcopenia, the pathological age-related loss of muscle mass and function; and malnutrition, the imbalance in nutrient intake and resultant energy production, are both commonly occurring conditions in old adults. Altered nutrition plays a crucial role in the onset of sarcopenia, and both these disorders are associated with detrimental consequences for patients (e.g., frailty, morbidity, and mortality) and society (e.g., healthcare costs). Importantly, sarcopenia and malnutrition also share critical molecular alterations, such as mitochondrial dysfunction, increased oxidative stress, and a chronic state of low grade and sterile inflammation, defined as inflammageing. Given the connection between malnutrition and sarcopenia, nutritional interventions capable of affecting mitochondrial health and correcting inflammageing are emerging as possible strategies to target sarcopenia. Here, we discuss mitochondrial dysfunction, oxidative stress, and inflammageing as key features leading to sarcopenia. Moreover, we examine the effects of some branched amino acids, omega-3 PUFA, and selected micronutrients on these pathways, and their potential role in modulating sarcopenia, warranting further clinical investigation.


Assuntos
Fragilidade , Sarcopenia , Aminoácidos , Humanos , Micronutrientes , Mitocôndrias/metabolismo
7.
Prog Neurobiol ; 215: 102289, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636655

RESUMO

Mitochondrial health is based on a delicate balance of specific mitochondrial functions (e.g. metabolism, signaling, dynamics) that are impaired in neurodegenerative diseases. Rescuing mitochondrial function by selectively targeting mitochondrial stressors, such as reactive oxygen species, inflammation or proteotoxic insults ("bottom-up" approaches) thus is a widely investigated therapeutic strategy. While successful in preclinical studies, these approaches have largely failed to show clear clinical benefits. Promoting the capacity of mitochondria - and other cellular components - to restore a healthy cellular environment is a promising complementary or alternative approach. Herein, we provide a non-technical overview for neurologists and scientists interested in brain metabolism on neuroprotective strategies targeting mitochondria and focus on top-down interventions such as metabolic modulators, exercise, dietary restriction, brain stimulation and conditioning. We highlight general conceptual differences to bottom-up approaches and provide hypotheses on how these mechanistically comparatively poorly characterized top-down therapies may work, discussing notably mitochondrial stress responses and mitohormesis.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Exercício Físico/fisiologia , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Neuroproteção , Espécies Reativas de Oxigênio/metabolismo
8.
Bio Protoc ; 11(19): e4183, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34722829

RESUMO

Advances in C. elegans research have allowed scientists to recapitulate different human disorders, from neurodegenerative diseases to muscle dysfunction, in these nematodes. Concomitantly, the interest in visualizing organs affected by these conditions has grown, leading to the establishment of different antibody- and dye-based staining protocols to verify tissue morphology. In particular, the quality of muscle tissue has been largely used in nematodes as a readout for fitness and healthspan. Phalloidin derivatives, which are commonly used to stain actin filaments in cells and tissues, have been implemented in the context of C. elegans research for visualization of muscle fibers. However, the majority of the phalloidin-based protocols depend on fixation steps using harmful compounds, preparation of specific buffers, and large amounts of worms. Herein, we implemented a safer and more flexible experimental procedure to stain actin filaments in C. elegans using phalloidin-based dyes. Lyophilization of the worms followed by their acetone permeabilization allows bypassing the fixation process while also providing the opportunity to suspend the experiment at different steps. Moreover, by using conventional buffers throughout our protocol, we avoid the additional preparation of solutions. Finally, our protocol requires a limited number of worms, making it suitable for slow-growing C. elegans strains. Overall, this protocol provides an efficient, fast, and safer method to stain actin filaments and visualize muscle fibers in C. elegans. Graphic abstract: Schematic overview of phalloidin staining in C. elegans for assessing muscle fiber morphology.

9.
Cell Rep ; 34(3): 108660, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472069

RESUMO

Aging is characterized by loss of proteostasis and mitochondrial homeostasis. Here, we provide bioinformatic evidence of dysregulation of mitochondrial and proteostasis pathways in muscle aging and diseases. Moreover, we show accumulation of amyloid-like deposits and mitochondrial dysfunction during natural aging in the body wall muscle of C. elegans, in human primary myotubes, and in mouse skeletal muscle, partially phenocopying inclusion body myositis (IBM). Importantly, NAD+ homeostasis is critical to control age-associated muscle amyloidosis. Treatment of either aged N2 worms, a nematode model of amyloid-beta muscle proteotoxicity, human aged myotubes, or old mice with the NAD+ boosters nicotinamide riboside (NR) and olaparib (AZD) increases mitochondrial function and muscle homeostasis while attenuating amyloid accumulation. Hence, our data reveal that age-related amyloidosis is a contributing factor to mitochondrial dysfunction and that both are features of the aging muscle that can be ameliorated by NAD+ metabolism-enhancing approaches, warranting further clinical studies.


Assuntos
Amiloidose/genética , Músculo Esquelético/metabolismo , NAD/metabolismo , Envelhecimento , Animais , Caenorhabditis elegans , Homeostase , Humanos , Camundongos
10.
Sci Transl Med ; 13(623): eabc7367, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878822

RESUMO

Skeletal muscle displays remarkable plasticity upon exercise and is also one of the organs most affected by aging. Despite robust evidence that aging is associated with loss of fast-twitch (type II) muscle fibers, the underlying mechanisms remain to be elucidated. Here, we identified an exercise-induced long noncoding RNA, CYTOR, whose exercise responsiveness was conserved in human and rodents. Cytor overexpression in mouse myogenic progenitor cells enhanced myogenic differentiation by promoting fast-twitch cell fate, whereas Cytor knockdown deteriorated expression of mature type II myotubes. Skeletal muscle Cytor expression was reduced upon mouse aging, and Cytor expression in young mice was required to maintain proper muscle morphology and function. In aged mice, rescuing endogenous Cytor expression using adeno-associated virus serotype 9 delivery of CRISPRa reversed the age-related decrease in type II fibers and improved muscle mass and function. In humans, CYTOR expression correlated with type II isoform expression and was decreased in aged myoblasts. Increased CYTOR expression, mediated by a causal cis­expression quantitative trait locus located within a CYTOR skeletal muscle enhancer element, was associated with improved 6-min walk performance in aged individuals from the Helsinki Birth Cohort Study. Direct CYTOR overexpression using CRISPRa in aged human donor myoblasts enhanced expression of type II myosin isoforms. Mechanistically, Cytor reduced chromatin accessibility and occupancy at binding motifs of the transcription factor Tead1 by binding, and hence sequestering, Tead1. In conclusion, the long noncoding RNA Cytor was found to be a regulator of fast-twitch myogenesis in aging.


Assuntos
RNA Longo não Codificante , Envelhecimento/genética , Animais , Diferenciação Celular/genética , Estudos de Coortes , Humanos , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Nat Metab ; 2(1): 9-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32694684

RESUMO

The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.


Assuntos
Doença , Homeostase , NAD/metabolismo , Animais , Glicólise , Humanos , Longevidade , Metabolismo/fisiologia , NADP/metabolismo , Oxirredução , Fosforilação , Sirtuínas/metabolismo , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA