Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2316765121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990946

RESUMO

How does the brain simultaneously process signals that bring complementary information, like raw sensory signals and their transformed counterparts, without any disruptive interference? Contemporary research underscores the brain's adeptness in using decorrelated responses to reduce such interference. Both neurophysiological findings and artificial neural networks support the notion of orthogonal representation for signal differentiation and parallel processing. Yet, where, and how raw sensory signals are transformed into more abstract representations remains unclear. Using a temporal pattern discrimination task in trained monkeys, we revealed that the second somatosensory cortex (S2) efficiently segregates faithful and transformed neural responses into orthogonal subspaces. Importantly, S2 population encoding for transformed signals, but not for faithful ones, disappeared during a nondemanding version of this task, which suggests that signal transformation and their decoding from downstream areas are only active on-demand. A mechanistic computation model points to gain modulation as a possible biological mechanism for the observed context-dependent computation. Furthermore, individual neural activities that underlie the orthogonal population representations exhibited a continuum of responses, with no well-determined clusters. These findings advocate that the brain, while employing a continuum of heterogeneous neural responses, splits population signals into orthogonal subspaces in a context-dependent fashion to enhance robustness, performance, and improve coding efficiency.


Assuntos
Macaca mulatta , Córtex Somatossensorial , Animais , Córtex Somatossensorial/fisiologia , Modelos Neurológicos , Masculino
2.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992139

RESUMO

Little is known about how dopamine (DA) neuron firing rates behave in cognitively demanding decision-making tasks. Here, we investigated midbrain DA activity in monkeys performing a discrimination task in which the animal had to use working memory (WM) to report which of two sequentially applied vibrotactile stimuli had the higher frequency. We found that perception was altered by an internal bias, likely generated by deterioration of the representation of the first frequency during the WM period. This bias greatly controlled the DA phasic response during the two stimulation periods, confirming that DA reward prediction errors reflected stimulus perception. In contrast, tonic dopamine activity during WM was not affected by the bias and did not encode the stored frequency. More interestingly, both delay-period activity and phasic responses before the second stimulus negatively correlated with reaction times of the animals after the trial start cue and thus represented motivated behavior on a trial-by-trial basis. During WM, this motivation signal underwent a ramp-like increase. At the same time, motivation positively correlated with accuracy, especially in difficult trials, probably by decreasing the effect of the bias. Overall, our results indicate that DA activity, in addition to encoding reward prediction errors, could at the same time be involved in motivation and WM. In particular, the ramping activity during the delay period suggests a possible DA role in stabilizing sustained cortical activity, hypothetically by increasing the gain communicated to prefrontal neurons in a motivation-dependent way.


Assuntos
Dopamina/farmacologia , Memória de Curto Prazo/fisiologia , Motivação/fisiologia , Recompensa , Animais , Comportamento Animal/fisiologia , Neurônios Dopaminérgicos/fisiologia , Masculino , Mesencéfalo/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(50): e2214562119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469775

RESUMO

The dorsal premotor cortex (DPC) has classically been associated with a role in preparing and executing the physical motor variables during cognitive tasks. While recent work has provided nuanced insights into this role, here we propose that DPC also participates more actively in decision-making. We recorded neuronal activity in DPC while two trained monkeys performed a vibrotactile categorization task, utilizing two partially overlapping ranges of stimulus values that varied on two physical attributes: vibrotactile frequency and amplitude. We observed a broad heterogeneity across DPC neurons, the majority of which maintained the same response patterns across attributes and ranges, coding in the same periods, mixing temporal and categorical dynamics. The predominant categorical signal was maintained throughout the delay, movement periods and notably during the intertrial period. Putting the entire population's data through two dimensionality reduction techniques, we found strong temporal and categorical representations without remnants of the stimuli's physical parameters. Furthermore, projecting the activity of one population over the population axes of the other yielded identical categorical and temporal responses. Finally, we sought to identify functional subpopulations based on the combined activity of all stimuli, neurons, and time points; however, we found that single-unit responses mixed temporal and categorical dynamics and couldn't be clustered. All these point to DPC playing a more decision-related role than previously anticipated.


Assuntos
Córtex Motor , Córtex Motor/fisiologia , Neurônios/fisiologia , Movimento/fisiologia
4.
Proc Natl Acad Sci U S A ; 119(52): e2213847119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534792

RESUMO

Do sensory cortices process more than one sensory modality? To answer these questions, scientists have generated a wide variety of studies at distinct space-time scales in different animal models, and often shown contradictory conclusions. Some conclude that this process occurs in early sensory cortices, but others that this occurs in areas central to sensory cortices. Here, we sought to determine whether sensory neurons process and encode physical stimulus properties of different modalities (tactile and acoustic). For this, we designed a bimodal detection task where the senses of touch and hearing compete from trial to trial. Two Rhesus monkeys performed this novel task, while neural activity was recorded in areas 3b and 1 of the primary somatosensory cortex (S1). We analyzed neurons' coding properties and variability, organizing them by their receptive field's position relative to the stimulation zone. Our results indicate that neurons of areas 3b and 1 are unimodal, encoding only the tactile modality in both the firing rate and variability. Moreover, we found that neurons in area 3b carried more information about the periodic stimulus structure than those in area 1, possessed lower response and coding latencies, and had a lower intrinsic time scale. In sum, these differences reveal a hidden processing-based hierarchy. Finally, using a powerful nonlinear dimensionality reduction algorithm, we show that the activity from areas 3b and 1 can be separated, establishing a clear division in the functionality of these two subareas of S1.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Animais , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Tato , Lobo Parietal , Células Receptoras Sensoriais
5.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431695

RESUMO

The ability of cortical networks to integrate information from different sources is essential for cognitive processes. On one hand, sensory areas exhibit fast dynamics often phase-locked to stimulation; on the other hand, frontal lobe areas with slow response latencies to stimuli must integrate and maintain information for longer periods. Thus, cortical areas may require different timescales depending on their functional role. Studying the cortical somatosensory network while monkeys discriminated between two vibrotactile stimulus patterns, we found that a hierarchical order could be established across cortical areas based on their intrinsic timescales. Further, even though subareas (areas 3b, 1, and 2) of the primary somatosensory (S1) cortex exhibit analogous firing rate responses, a clear differentiation was observed in their timescales. Importantly, we observed that this inherent timescale hierarchy was invariant between task contexts (demanding vs. nondemanding). Even if task context severely affected neural coding in cortical areas downstream to S1, their timescales remained unaffected. Moreover, we found that these time constants were invariant across neurons with different latencies or coding. Although neurons had completely different dynamics, they all exhibited comparable timescales within each cortical area. Our results suggest that this measure is demonstrative of an inherent characteristic of each cortical area, is not a dynamical feature of individual neurons, and does not depend on task demands.


Assuntos
Cognição/fisiologia , Lobo Frontal/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Humanos , Macaca mulatta/fisiologia , Estimulação Física , Tempo de Reação/fisiologia
6.
Proc Natl Acad Sci U S A ; 117(37): 23021-23032, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859756

RESUMO

Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear "ramping" component of each neuron's firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data.


Assuntos
Memória de Curto Prazo/fisiologia , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Primatas
7.
Proc Natl Acad Sci U S A ; 116(15): 7523-7532, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30918128

RESUMO

During discrimination between two sequential vibrotactile stimulus patterns, the primate dorsal premotor cortex (DPC) neurons exhibit a complex repertoire of coding dynamics associated with the working memory, comparison, and decision components of this task. In addition, these neurons and neurons with no coding responses show complex strong fluctuations in their firing rate associated with the temporal sequence of task events. Here, to make sense of this temporal complexity, we extracted the temporal signals that were latent in the population. We found a strong link between the individual and population response, suggesting a common neural substrate. Notably, in contrast to coding dynamics, these time-dependent responses were unaffected during error trials. However, in a nondemanding task in which monkeys did not require discrimination for reward, these time-dependent signals were largely reduced and changed. These results suggest that temporal dynamics in DPC reflect the underlying cognitive processes of this task.


Assuntos
Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Animais , Macaca mulatta , Córtex Motor/citologia
8.
Proc Natl Acad Sci U S A ; 116(15): 7513-7522, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910974

RESUMO

The direction of functional information flow in the sensory thalamocortical circuit may play a role in stimulus perception, but, surprisingly, this process is poorly understood. We addressed this problem by evaluating a directional information measure between simultaneously recorded neurons from somatosensory thalamus (ventral posterolateral nucleus, VPL) and somatosensory cortex (S1) sharing the same cutaneous receptive field while monkeys judged the presence or absence of a tactile stimulus. During stimulus presence, feed-forward information (VPL → S1) increased as a function of the stimulus amplitude, while pure feed-back information (S1 → VPL) was unaffected. In parallel, zero-lag interaction emerged with increasing stimulus amplitude, reflecting externally driven thalamocortical synchronization during stimulus processing. Furthermore, VPL → S1 information decreased during error trials. Also, VPL → S1 and zero-lag interaction decreased when monkeys were not required to report the stimulus presence. These findings provide evidence that both the direction of information flow and the instant synchronization in the sensory thalamocortical circuit play a role in stimulus perception.


Assuntos
Rede Nervosa/fisiologia , Tempo de Reação/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Haplorrinos , Rede Nervosa/citologia , Córtex Somatossensorial/citologia , Núcleos Ventrais do Tálamo/citologia
9.
Cogn Neuropsychol ; 37(3-4): 220-223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32066320

RESUMO

Several thousand years ago, our human ancestors realized that the brain was the organ of the mind and movement. But, how does the brain generate a voluntary movement and adds consciousness to it? Here, we assume that these two processes can be explained by neuroscience, but a large proportion of our society -including some scientists- considers consciousness as some immaterial substance that dwells in our body. As consequence of these divided opinions, several theories have recently emerged with the aim of explaining consciousness. These theories in no order of importance, but definitely in the order of complexity, are the global workspace (GWT), attention schema (AST), higher order-thought (HOT) and illusionist (IT) theories. All these theories originate from different backgrounds, and each tries to explain different components of consciousness: from a pure neurobiological (GWT) interpretation to a pure psychological-folk interpretation (IT).


Assuntos
Estado de Consciência , Neurociências , Atenção , Encéfalo , Humanos
10.
Proc Natl Acad Sci U S A ; 114(48): E10494-E10503, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133424

RESUMO

Learning to associate unambiguous sensory cues with rewarded choices is known to be mediated by dopamine (DA) neurons. However, little is known about how these neurons behave when choices rely on uncertain reward-predicting stimuli. To study this issue we reanalyzed DA recordings from monkeys engaged in the detection of weak tactile stimuli delivered at random times and formulated a reinforcement learning model based on belief states. Specifically, we investigated how the firing activity of DA neurons should behave if they were coding the error in the prediction of the total future reward when animals made decisions relying on uncertain sensory and temporal information. Our results show that the same signal that codes for reward prediction errors also codes the animal's certainty about the presence of the stimulus and the temporal expectation of sensory cues.


Assuntos
Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Neurônios Dopaminérgicos/fisiologia , Haplorrinos/fisiologia , Modelos Neurológicos , Recompensa , Animais , Teorema de Bayes , Sinais (Psicologia) , Dopamina/metabolismo , Potenciais da Membrana/fisiologia , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Microeletrodos , Tato
11.
Proc Natl Acad Sci U S A ; 114(52): 13810-13815, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229820

RESUMO

Previous work on perceptual decision making in the sensorimotor system has shown population dynamics in the beta band, corresponding to the encoding of stimulus properties and the final decision outcome. Here, we asked how oscillatory dynamics in the medial premotor cortex (MPC) contribute to supramodal perceptual decision making. We recorded local field potentials (LFPs) and spikes in two monkeys trained to perform a tactile-acoustic frequency discrimination task, including both unimodal and crossmodal conditions. We studied the role of oscillatory activity as a function of stimulus properties (frequency and sensory modality), as well as decision outcome. We found that beta-band power correlated with relevant stimulus properties: there was a significant modulation by stimulus frequency during the working-memory (WM) retention interval, as well as modulation by stimulus modality-the latter was observed only in the case of a purely unimodal task, where modality information was relevant to prepare for the upcoming second stimulus. Furthermore, we found a significant modulation of beta power during the comparison and decision period, which was predictive of decision outcome. Finally, beta-band spike-field coherence (SFC) matched these LFP observations. In conclusion, we demonstrate that beta power in MPC is reflective of stimulus features in a supramodal, context-dependent manner, and additionally reflects the decision outcome. We propose that these beta modulations are a signature of the recruitment of functional neuronal ensembles, which encode task-relevant information.


Assuntos
Ritmo beta/fisiologia , Julgamento/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Animais , Macaca mulatta
12.
Proc Natl Acad Sci U S A ; 114(2): 394-399, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028221

RESUMO

Working memory (WM) is a cognitive function for temporary maintenance and manipulation of information, which requires conversion of stimulus-driven signals into internal representations that are maintained across seconds-long mnemonic delays. Within primate prefrontal cortex (PFC), a critical node of the brain's WM network, neurons show stimulus-selective persistent activity during WM, but many of them exhibit strong temporal dynamics and heterogeneity, raising the questions of whether, and how, neuronal populations in PFC maintain stable mnemonic representations of stimuli during WM. Here we show that despite complex and heterogeneous temporal dynamics in single-neuron activity, PFC activity is endowed with a population-level coding of the mnemonic stimulus that is stable and robust throughout WM maintenance. We applied population-level analyses to hundreds of recorded single neurons from lateral PFC of monkeys performing two seminal tasks that demand parametric WM: oculomotor delayed response and vibrotactile delayed discrimination. We found that the high-dimensional state space of PFC population activity contains a low-dimensional subspace in which stimulus representations are stable across time during the cue and delay epochs, enabling robust and generalizable decoding compared with time-optimized subspaces. To explore potential mechanisms, we applied these same population-level analyses to theoretical neural circuit models of WM activity. Three previously proposed models failed to capture the key population-level features observed empirically. We propose network connectivity properties, implemented in a linear network model, which can underlie these features. This work uncovers stable population-level WM representations in PFC, despite strong temporal neural dynamics, thereby providing insights into neural circuit mechanisms supporting WM.


Assuntos
Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Cognição/fisiologia , Macaca mulatta/fisiologia , Modelos Neurológicos , Dinâmica Populacional
13.
Proc Natl Acad Sci U S A ; 113(49): E7966-E7975, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872293

RESUMO

The problem of neural coding in perceptual decision making revolves around two fundamental questions: (i) How are the neural representations of sensory stimuli related to perception, and (ii) what attributes of these neural responses are relevant for downstream networks, and how do they influence decision making? We studied these two questions by recording neurons in primary somatosensory (S1) and dorsal premotor (DPC) cortex while trained monkeys reported whether the temporal pattern structure of two sequential vibrotactile stimuli (of equal mean frequency) was the same or different. We found that S1 neurons coded the temporal patterns in a literal way and only during the stimulation periods and did not reflect the monkeys' decisions. In contrast, DPC neurons coded the stimulus patterns as broader categories and signaled them during the working memory, comparison, and decision periods. These results show that the initial sensory representation is transformed into an intermediate, more abstract categorical code that combines past and present information to ultimately generate a perceptually informed choice.


Assuntos
Tomada de Decisões/fisiologia , Discriminação Psicológica/fisiologia , Córtex Motor/fisiologia , Reconhecimento Fisiológico de Modelo , Córtex Somatossensorial/fisiologia , Animais , Julgamento , Macaca mulatta , Memória/fisiologia , Tempo de Reação , Análise de Célula Única
14.
Proc Natl Acad Sci U S A ; 112(15): 4773-8, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825711

RESUMO

Neurons of the primary somatosensory cortex (S1) respond as functions of frequency or amplitude of a vibrotactile stimulus. However, whether S1 neurons encode both frequency and amplitude of the vibrotactile stimulus or whether each sensory feature is encoded by separate populations of S1 neurons is not known, To further address these questions, we recorded S1 neurons while trained monkeys categorized only one sensory feature of the vibrotactile stimulus: frequency, amplitude, or duration. The results suggest a hierarchical encoding scheme in S1: from neurons that encode all sensory features of the vibrotactile stimulus to neurons that encode only one sensory feature. We hypothesize that the dynamic representation of each sensory feature in S1 might serve for further downstream processing that leads to the monkey's psychophysical behavior observed in these tasks.


Assuntos
Macaca mulatta/fisiologia , Neurônios/fisiologia , Sensação/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Discriminação Psicológica/fisiologia , Masculino , Estimulação Física/métodos , Córtex Somatossensorial/citologia , Análise e Desempenho de Tarefas , Tato/fisiologia , Vibração
15.
Proc Natl Acad Sci U S A ; 112(15): 4761-6, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825731

RESUMO

Neural correlations during a cognitive task are central to study brain information processing and computation. However, they have been poorly analyzed due to the difficulty of recording simultaneous single neurons during task performance. In the present work, we quantified neural directional correlations using spike trains that were simultaneously recorded in sensory, premotor, and motor cortical areas of two monkeys during a somatosensory discrimination task. Upon modeling spike trains as binary time series, we used a nonparametric Bayesian method to estimate pairwise directional correlations between many pairs of neurons throughout different stages of the task, namely, perception, working memory, decision making, and motor report. We find that solving the task involves feedforward and feedback correlation paths linking sensory and motor areas during certain task intervals. Specifically, information is communicated by task-driven neural correlations that are significantly delayed across secondary somatosensory cortex, premotor, and motor areas when decision making takes place. Crucially, when sensory comparison is no longer requested for task performance, a major proportion of directional correlations consistently vanish across all cortical areas.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Macaca mulatta/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Somatossensorial/fisiologia , Algoritmos , Animais , Teorema de Bayes , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Tomada de Decisões/fisiologia , Discriminação Psicológica/fisiologia , Macaca mulatta/anatomia & histologia , Macaca mulatta/psicologia , Masculino , Modelos Neurológicos , Método de Monte Carlo , Rede Nervosa/anatomia & histologia , Rede Nervosa/citologia , Neurônios/fisiologia , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/citologia
16.
Proc Natl Acad Sci U S A ; 111(1): 463-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344287

RESUMO

Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.


Assuntos
Mapeamento Encefálico/métodos , Cálcio/metabolismo , Córtex Motor/fisiologia , Animais , Comportamento Animal , Sinalização do Cálcio , Estimulação Elétrica , Tecnologia de Fibra Óptica , Macaca mulatta , Movimento/fisiologia , Neurônios/metabolismo , Estrutura Terciária de Proteína , Gravação em Vídeo
17.
Proc Natl Acad Sci U S A ; 111(17): E1797-805, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733899

RESUMO

To explore the role of oscillatory dynamics of the somatosensory thalamocortical network in perception and decision making, we recorded the simultaneous neuronal activity in the ventral posterolateral nucleus (VPL) of the somatosensory thalamus and primary somatosensory cortex (S1) in two macaque monkeys performing a vibrotactile detection task. Actively detecting a vibrotactile stimulus and reporting its perception elicited a sustained poststimulus beta power increase in VPL and an alpha power decrease in S1, in both stimulus-present and stimulus-absent trials. These oscillatory dynamics in the somatosensory thalamocortical network depended on the behavioral context: they were stronger for the active detection condition than for a passive stimulation condition. Furthermore, contrasting stimulus-present vs. stimulus-absent responses, we found that poststimulus theta power increased in both VPL and S1, and alpha/beta power decreased in S1, reflecting the monkey's perceptual decision but not the motor response per se. Additionally, higher prestimulus alpha power in S1 correlated with an increased probability of the monkey reporting a stimulus, regardless of the actual presence of a stimulus. Thus, we found task-related modulations in oscillatory activity, not only in the neocortex but also in the thalamus, depending on behavioral context. Furthermore, oscillatory modulations reflected the perceptual decision process and subsequent behavioral response. We conclude that these early sensory regions, in addition to their primary sensory functions, may be actively involved in perceptual decision making.


Assuntos
Haplorrinos/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Análise e Desempenho de Tarefas , Tálamo/fisiologia , Tato/fisiologia , Vibração , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Tomada de Decisões , Percepção , Estimulação Física , Fatores de Tempo , Núcleos Ventrais do Tálamo/fisiologia
18.
Proc Natl Acad Sci U S A ; 110(28): E2635-44, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798408

RESUMO

To understand how sensory-driven neural activity gives rise to perception, it is essential to characterize how various relay stations in the brain encode stimulus presence. Neurons in the ventral posterior lateral (VPL) nucleus of the somatosensory thalamus and in primary somatosensory cortex (S1) respond to vibrotactile stimulation with relatively slow modulations (∼100 ms) of their firing rate. In addition, faster modulations (∼10 ms) time-locked to the stimulus waveform are observed in both areas, but their contribution to stimulus detection is unknown. Furthermore, it is unclear whether VPL and S1 neurons encode stimulus presence with similar accuracy and via the same response features. To address these questions, we recorded single neurons while trained monkeys judged the presence or absence of a vibrotactile stimulus of variable amplitude, and their activity was analyzed with a unique decoding method that is sensitive to the time scale of the firing rate fluctuations. We found that the maximum detection accuracy of single neurons is similar in VPL and S1. However, VPL relies more heavily on fast rate modulations than S1, and as a consequence, the neural code in S1 is more tolerant: its performance degrades less when the readout method or the time scale of integration is suboptimal. Therefore, S1 neurons implement a more robust code, one less sensitive to the temporal integration window used to infer stimulus presence downstream. The differences between VPL and S1 responses signaling the appearance of a stimulus suggest a transformation of the neural code from thalamus to cortex.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Tato , Algoritmos , Animais , Comportamento Animal , Potenciais Evocados , Macaca mulatta , Psicometria , Análise e Desempenho de Tarefas , Incerteza
19.
Proc Natl Acad Sci U S A ; 110(37): 15085-90, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980180

RESUMO

Coherent oscillations in the theta-to-gamma frequency range have been proposed as a mechanism that coordinates neural activity in large-scale cortical networks in sensory, motor, and cognitive tasks. Whether this mechanism also involves coherent oscillations at delta frequencies (1-4 Hz) is not known. Rather, delta oscillations have been associated with slow-wave sleep. Here, we show coherent oscillations in the delta frequency band between parietal and frontal cortices during the decision-making component of a somatosensory discrimination task. Importantly, the magnitude of this delta-band coherence is modulated by the different decision alternatives. Furthermore, during control conditions not requiring decision making, delta-band coherences are typically much reduced. Our work indicates an important role for synchronous activity in the delta frequency band when large-scale, distant cortical networks coordinate their neural activity during decision making.


Assuntos
Córtex Cerebral/fisiologia , Tomada de Decisões/fisiologia , Ritmo Delta/fisiologia , Macaca mulatta/fisiologia , Potenciais de Ação , Animais , Comportamento Animal/fisiologia , Córtex Cerebral/anatomia & histologia , Discriminação Psicológica/fisiologia , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Macaca mulatta/anatomia & histologia , Macaca mulatta/psicologia , Masculino , Modelos Animais , Modelos Neurológicos , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia
20.
PLoS Comput Biol ; 10(4): e1003492, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743140

RESUMO

Decision making is a process of utmost importance in our daily lives, the study of which has been receiving notable attention for decades. Nevertheless, the neural mechanisms underlying decision making are still not fully understood. Computational modeling has revealed itself as a valuable asset to address some of the fundamental questions. Biophysically plausible models, in particular, are useful in bridging the different levels of description that experimental studies provide, from the neural spiking activity recorded at the cellular level to the performance reported at the behavioral level. In this article, we have reviewed some of the recent progress made in the understanding of the neural mechanisms that underlie decision making. We have performed a critical evaluation of the available results and address, from a computational perspective, aspects of both experimentation and modeling that so far have eluded comprehension. To guide the discussion, we have selected a central theme which revolves around the following question: how does the spatiotemporal structure of sensory stimuli affect the perceptual decision-making process? This question is a timely one as several issues that still remain unresolved stem from this central theme. These include: (i) the role of spatiotemporal input fluctuations in perceptual decision making, (ii) how to extend the current results and models derived from two-alternative choice studies to scenarios with multiple competing evidences, and (iii) to establish whether different types of spatiotemporal input fluctuations affect decision-making outcomes in distinctive ways. And although we have restricted our discussion mostly to visual decisions, our main conclusions are arguably generalizable; hence, their possible extension to other sensory modalities is one of the points in our discussion.


Assuntos
Tomada de Decisões , Ruído , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA