Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Angew Chem Int Ed Engl ; 63(23): e202404911, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581238

RESUMO

Developing efficient and earth-abundant catalysts for CO2 fixation to high value-added chemicals is meaningful but challenging. Styrene carbonate has great market value, but the cycloaddition of CO2 to styrene oxide is difficult due to the high steric hindrance and weak electron-withdrawing ability of the phenyl group. To utilize clean energy (such as optical energy) directly and effectively for CO2 value-added process, we introduce earth-abundant Ti single-atom into the mesoporous nitrogen, oxygen-doped carbon nanosheets (Ti-CNO) by a two-step method. The Ti-CNO exhibits excellent photothermal catalytic activities and stability for cycloaddition of CO2 and styrene oxide to styrene carbonate. Under light irradiation and ambient pressure, an optimal Ti-CNO produces styrene carbonate with a yield of 98.3 %, much higher than CN (27.1 %). In addition, it shows remarkable stability during 10 consecutive cycles. Its enhanced catalytic performance stems from the enhanced photothermal effect and improved Lewis acidic/basic sites exposed by the abundant mesopores. The experiments and theoretical simulations demonstrate the styrene oxide⋅+ and CO2⋅- radicals generated at the Lewis acidic (Tiδ+) and basic sites of Ti-CNO under light irradiation, respectively. This work furnishes a strategy for synthesizing advanced single-atom catalysts for photo-thermal synergistic CO2 fixation to high value products via a cycloaddition pathway.

2.
Nano Lett ; 22(18): 7563-7571, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103215

RESUMO

Surface and strain engineering are two effective strategies to improve performance; however, synergetic controls of surface and strain effects remains a grand challenge. Herein, we report a highly efficient and stable electrocatalyst with defect-rich Pt atomic layers coating an ordered Pt3Sn intermetallic core. Pt atomic layers enable the generation of 4.4% tensile strain along the [001] direction. Benefiting from synergetic controls of surface and strain engineering, Pt atomic-layer catalyst (Ptatomic-layer) achieves a remarkable enhancement on ethanol electrooxidation performance with excellent specific activity of 5.83 mA cm-2 and mass activity of 1166.6 mA mg Pt-1, which is 10.6 and 3.6 times higher than the commercial Pt/C, respectively. Moreover, the intermetallic core endows Ptatomic-layer with outstanding durability. In situ infrared reflection-absorption spectroscopy as well as density functional theory calculations reveal that tensile strain and rich defects of Ptatomci-layer facilitate to break C-C bond for complete ethanol oxidation for enhanced performance.

3.
Small ; 16(18): e2000426, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32270917

RESUMO

Here, the photocatalytic CO2 reduction reaction (CO2 RR) with the selectivity of carbon products up to 100% is realized by completely suppressing the H2 evolution reaction under visible light (λ > 420 nm) irradiation. To target this, plasmonic Au/CdSe dumbbell nanorods enhance light harvesting and produce a plasmon-enhanced charge-rich environment; peripheral Cu2 O provides rich active sites for CO2 reduction and suppresses the hydrogen generation to improve the selectivity of carbon products. The middle CdSe serves as a bridge to transfer the photocharges. Based on synthesizing these Au/CdSe-Cu2 O hierarchical nanostructures (HNSs), efficient photoinduced electron/hole (e- /h+ ) separation and 100% of CO selectivity can be realized. Also, the 2e- /2H+ products of CO can be further enhanced and hydrogenated to effectively complete 8e- /8H+ reduction of CO2 to methane (CH4 ), where a sufficient CO concentration and the proton provided by H2 O reduction are indispensable. Under the optimum condition, the Au/CdSe-Cu2 O HNSs display high photocatalytic activity and stability, where the stable gas generation rates are 254 and 123 µmol g-1 h-1 for CO and CH4 over a 60 h period.

4.
Chemistry ; 26(18): 4025-4031, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31596524

RESUMO

Dilute alloy nanostructures have been demonstrated to possess distinct catalytic properties. Noble-metal-induced reduction is one effective synthesis strategy to construct dilute alloys and modify the catalytic performance of the host metal. Herein, we report the synthesis of ultrafine PtRu dilute alloy nanodendrites (PtRu NDs, molar ratio Ru/Pt is 1:199) by the reduction of RuIII ions induced by Pt metal. For the methanol oxidation reaction, PtRu NDs showed the highest forward peak current density (2.66 mA cm-2 , 1.14 A/mgPt ) and the best stability compared to those of pure-Pt nanodendrites (pure-Pt NDs), commercial PtRu/C and commercial Pt/C catalysts.

5.
J Am Chem Soc ; 141(42): 16569-16573, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31588748

RESUMO

The electrocatalytic reduction reaction of CO2 (CO2RR) is a promising strategy to promote the global carbon balance and combat global climate change. Herein, exclusive Bi-N4 sites on porous carbon networks can be achieved through thermal decomposition of a bismuth-based metal-organic framework (Bi-MOF) and dicyandiamide (DCD) for CO2RR. Interestingly, in situ environmental transmission electron microscopy (ETEM) analysis not only directly shows the reduction from Bi-MOF into Bi nanoparticles (NPs) but also exhibits subsequent atomization of Bi NPs assisted by the NH3 released from the decomposition of DCD. Our catalyst exhibits high intrinsic CO2 reduction activity for CO conversion, with a high Faradaic efficiency (FECO up to 97%) and high turnover frequency of 5535 h-1 at a low overpotential of 0.39 V versus reversible hydrogen electrode. Further experiments and density functional theory results demonstrate that the single-atom Bi-N4 site is the dominating active center simultaneously for CO2 activation and the rapid formation of key intermediate COOH* with a low free energy barrier.

6.
Opt Express ; 27(14): 19168-19176, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503680

RESUMO

We experimentally determined the dispersion of the complex third-order nonlinear optical susceptibility χ(3) of Au nanorods over a wide bandwidth (370 - 800 nm). Compared to bulk Au, these nanorods exhibit greatly enhanced nonlinearities that can be manipulated by geometrical parameters. Accurately measuring the χ(3) values of nanostructured metals is challenging because χ(3) is strongly influenced by the local field effects. Hence the current published χ(3) values for Au nanorods have huge variations in both magnitude and sign because Z-scan measurements are used almost exclusively. This work combines pump-probe methods with spectroscopic ellipsometry to show that Au nanorods exhibit strong wavelength dependence and enhanced χ(3) in the vicinity of the longitudinal plasmon mode and explains where the regions of SA and RSA exist and how focusing and defocusing affects χ(3). In this context, the results highlight the importance of the dispersion of the quantity χ(3) to design plasmonic platforms for nanophotonics applications.

7.
Angew Chem Int Ed Engl ; 58(15): 4852-4857, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199134

RESUMO

Thiol- and solvent-coordinated cation exchange kinetics have been applied to engineer the composition and crystallinity of novel nanocrystals. The detailed thermodynamics and kinetics of the reactions were explored by NMR spectroscopy, time-dependent photoluminescence (PL) characterizations and theoretical simulations. The fine structure of the colloidal semiconductor nanocrystals (CSNCs) was investigated by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). In this way, high-quality p-type Ag-doped ZnS quantum dots (QDs) and Au@ZnS hetero-nanocrystals with a cubic phase ZnS shell were synthesized successfully.The unprecedented dominant Ag+ -dopant-induced fluorescence and p-type conductivity in the zinc-blende ZnS are reported.

8.
Small ; 14(16): e1703501, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29430863

RESUMO

High-efficient charge and energy transfer between nanocrystals (NCs) in a bottom-up assembly are hard to achieve, resulting in an obstacle in application. Instead of the ligands exchange strategies, the advantage of a continuous laser is taken with optimal wavelength and power to irradiate the film-scale NCs superlattices at solid-liquid interfaces. Owing to the Au-based NCs' surface plasmon resonance (SPR) effect, the gentle laser irradiation leads the Au NCs or Au@CdS core/shell NCs to attach each other with controlled pattern at the interfaces between solid NCs phase and liquid ethanol/ethylene glycol. A continuous wave 532 nm laser (6.68-13.37 W cm-2 ), to control Au-based superlattices, is used to form the monolayer with uniformly reduced interparticle distance followed by welded superstructures. Considering the size effect to Au NCs' melting, when decreasing the Au NCs size to ≈5 nm, stronger welding nanostructures are obtained with diverse unprecedented shapes which cannot be achieved by normal colloidal synthesis. With the help of facile scale-up and formation at solid-liquid interfaces, and a good connection of crystalline between NCs, the obtained plasmonic superstructured films that could be facilely transferred onto different substrates exhibit broad SPR absorption in the visible and near-infrared regime, enhanced electric conductivities, and wide applications as surface enhanced Raman scattering (SERS)-active substrates.

9.
Chemistry ; 24(12): 2999-3004, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29315866

RESUMO

Liquid phase one-pot synthesis of semiconductor nanocrystals, by direct nucleation-growth crystallization, is unsuccessful for synthesis of some kinds of semiconductors. Using ZnTe as an example here, highly disperse ZnTe nanoclusters with diameters of 2-3 nm were first synthesized by a facile solvothermal method. Then the ZnTe nanoclusters were chosen as starting crystallization seeds to mediate the synthesis of flexible semiconductor nanostructures. Three-dimensional (3D) oriented assembly of ZnTe nanoclusters to monodisperse dendrimer-like nanocrystals (DLNCs), and one-dimensional (1D) ZnTe nanobelts with cubic phase, have been achieved successfully. Supported by TEM characterization of time-dependent morphology evolution, the oriented attachment assisted seed growth, based on ZnTe nanoclusters, enabled the 1D flexible ZnTe nanobelts formation, which could reach to ≈10 micrometers length.

10.
Chemistry ; 24(51): 13676-13680, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30009408

RESUMO

Focusing on ternary I-III-VI2 colloidal nanocrystals (NCs) synthesized with precise control of the composition (from doping to ternary composition) and NIR fluorescence performance, monodisperse binary In3+ -doped Ag2 S NCs and ternary AgInS2 NCs have been achieved successfully by facile low-temperature in situ conversion of colloidal Ag2 S nanoparticles. In3+ ions were inserted into the crystal lattice of Ag2 S NCs at a relatively low temperature as dopant and ternary AgInS2 NCs were obtained at a higher temperature following a phase transition. These doped Ag2 S and AgInS2 NCs based on different indium precursor concentrations were explored with respect to the position and intensity of the near-infrared photoluminescent emission at different doping levels and crystal phase evolution.

11.
Chemistry ; 24(70): 18643-18647, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30325545

RESUMO

Differently from the normal three single precursor method to produce colloidal ternary quantum dots (QDs), herein ternary Ag3 SbS3 quantum dots (QDs) with efficient near-infrared (NIR) luminescence have been prepared by a new facile in situ conversion of Ag nanocrystals (NCs) with a binary Sb/S organic precursor Sb(C9 H19 COOS)3 under low temperature. The unprecedented construction evolution from Ag NCs to Ag3 SbS3 /Ag hetero-structure and final monodisperse Ag3 SbS3 QDs has been demonstrated. These novel Ag3 SbS3 QDs exhibit efficient NIR emission at ≈1263 nm and possess high colloidal stability.

12.
Nanotechnology ; 29(12): 125606, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29336353

RESUMO

Perovskite nanocrystals (NCs), which are a good fluorescence candidate with excellent photoelectric properties, have opened new avenues in the fabrication of highly efficient solar cells, light-emitting diodes (LEDs), and other optoelectronic devices. Further advances will rely on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional (3D) perovskites with architectural innovations. In this work, the perovskite film was fabricated on a flexible substrate using simple dip-coating technology and 3D assemblies of perovskite NCs were obtained through an attachment process. Original perovskite NCs had a rectangular or square morphology with high particle uniformity and the narrow and symmetric fluorescence emission peak was adjustable at 515-527 nm. The controllable self-assembly of the micron size cuboid-like 3D assembly had an apparent enhancement on peak (111) in the x-ray diffraction (XRD) pattern. Surface ligands not only play a role in the attachment process but also keep the independence of each NC in 3D assemblies. Such assembly of the perovskite film maintained the original perovskite NCs fluorescence emission peak and narrow full width at the half-maximum (FWHM), which is of great importance for the investigation of future devices.

13.
Angew Chem Int Ed Engl ; 57(17): 4642-4646, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29464839

RESUMO

The active species in supported metal catalysts are elusive to identify, and large quantities of inert species can cause significant waste. Herein, using a stoichiometrically precise synthetic method, we prepare atomically dispersed palladium-cerium oxide (Pd1 /CeO2 ) and hexapalladium cluster-cerium oxide (Pd6 /CeO2 ), as confirmed by spherical-aberration-corrected transmission electron microscopy and X-ray absorption fine structure spectroscopy. For aerobic alcohol oxidation, Pd1 /CeO2 shows extremely high catalytic activity with a TOF of 6739 h-1 and satisfactory selectivity (almost 100 % for benzaldehyde), while Pd6 /CeO2 is inactive, indicating that the true active species are single Pd atoms. Theoretical simulations reveal that the bulkier Pd6 clusters hinder the interactions between hydroxy groups and the CeO2 surface, thus suppressing synergy of Pd-Ce perimeter.

14.
Chemistry ; 21(34): 12034-41, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26178645

RESUMO

Bimetallic nanoparticles (NPs) often show new catalytic properties that are different from those of the parent metals. Carefully exploring the structures of bimetallic NPs is a prerequisite for understanding the structure-associated properties. Herein, binary PtSn NPs with tunable composition are prepared in a controllable manner. X-ray characterizations reveal that their structures evolve from SnO2-x -patched PtSn alloys to SnO2-x -patched Pt clusters when more tin is incorporated. An obvious composition-dependent catalytic performance is observed for the hydrogenation of α,ß-unsaturated aldehydes: the selectivity to unsaturated alcohol increases substantially at high tin content, whereas the reaction rate follows a volcano shape. Furthermore, Pt sites are responsible for hydrogen dissociation, whereas oxygen vacancy (Ovac ) sites, provided by SnO2-x , drastically enhance the adsorption of carbonyl group.

15.
Nanoscale ; 15(32): 13459-13465, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37548298

RESUMO

Developing efficient and stable oxygen reduction reaction (ORR) catalysts to replace the precious Pt/C is very important for the industrial application of proton-exchange membrane fuel cells. Herein, using bismuth-based metal-organic frameworks as the substrate to disperse copper ions, we prepared a catalyst containing both Cu single atoms and Cu nanoparticles (CuSACuNP/BiCN) by a pyrolysis method. In 0.1 M KOH electrolyte, the electrocatalytic ORR performance of CuSACuNP/BiCN was superior to that of commercial Pt/C. With a hierarchical porous architecture, CuSACuNP/BiCN displayed a half-wave potential of 0.86 V vs. RHE and a diffusion-limiting current density of 5.82 mA cm-2 with a four-electron transfer process. In addition, it was stable during a 12-hour durability test. This study provides guidance for the synthesis of advanced Cu-based nano-single-atom catalytic materials for ORR applications.

16.
ACS Nano ; 17(9): 8053-8063, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37092888

RESUMO

Gadolinium chelates for tumor magnetic resonance imaging (MRI) face challenges such as inadequate sensitivity, lack of selectivity, and risk of Gd leakage. This study presents a single-atom Gd nano-contrast agent (Gd-SA) that enhances tumor MRI. Isolated Gd atoms coordinated by six N atoms and two O atoms are atomically dispersed on a hollow carbon nanosphere, allowing the maximum utilization of Gd atoms with reduced risk of toxic Gd ion leakage. Owning to the large surface area and fast exchange of relaxed water molecules, Gd-SA shows excellent T1-weighted magnetic resonance enhancement with a r1 value of 11.05 mM-1 s-1 at 7 T, which is 3.6 times that of the commercial gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). In vivo MRI results show that the Gd-SA has a higher spatial resolution and a wider imaging time window for tumors than Gd-DTPA, with low hematological, hepatic, and nephric toxicities. These advantages demonstrate the great potential of single-atom Gd-based nanomaterials as safe, efficient, and long-term MRI contrast agents for cancer diagnosis.


Assuntos
Gadolínio DTPA , Neoplasias , Humanos , Gadolínio , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Neoplasias/diagnóstico por imagem
17.
J Am Chem Soc ; 134(44): 18165-8, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23088493

RESUMO

We report the formation of single-crystalline octahedral Au-Ag nanoframes by a modified galvanic replacement reaction. Upon sequential addition of AgNO(3), CuCl, and HAuCl(4) to octadecylamine solution, truncated polyhedral silver nanoparticles formed first and then changed into octahedral Au-Ag nanoframes, without requiring a conventional Ag removal step with additional oxidation etchant. The nanoframes have 12 sides, and all of the eight {111} faces are empty. The side grows along the [110] direction, and the diameter is less than 10 nm. The selective gold deposition on the high-energy (110) surface, the diffusion, and the selective redeposition of Au and Ag atoms are the key reasons for the formation of octahedral nanoframes.

18.
ChemSusChem ; 15(16): e202200498, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35686615

RESUMO

Dual-atom catalysts (DACs) are an important branch of single-atom catalysts (SACs), in which the former can effectively break the dilemma faced by the traditional SACs. The synergetic effects between bimetallic atoms provide many active sites, promising to improve catalytic performance and even catalyze more complex reactions. This paper reviews the recent research progresses of two kinds of DACs, including homonuclear and heteronuclear DACs, and their applications in oxygen reduction, carbon dioxide reduction, hydrogen evolution, oxygen evolution, Zn-air batteries, tandem catalytic reactions, and so on. In addition, in order to promote the further development of DACs, the challenges and perspectives of DACs are put forward.

19.
ACS Nano ; 15(2): 2005-2037, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33566564

RESUMO

Single-atom catalysts (SACs) featuring the complete atomic utilization of metal, high-efficient catalytic activity, superior selectivity, and excellent stability have been emerged as a frontier in the catalytic field. Recently, increasing interests have been drawn to apply SACs in biomedical fields for enzyme-mimic catalysis and disease therapy. To fulfill the demand of precision and personalized medicine, precisely engineering the structure and active site toward atomic levels is a trend for nanomedicines, promoting the evolution of metal-based biomedical nanomaterials, particularly biocatalytic nanomaterials, from nanoparticles to clusters and now to SACs. This review outlines the syntheses, characterizations, and catalytic mechanisms of metal clusters and SACs, with a focus on their biomedical applications including biosensing, antibacterial therapy, and cancer therapy, as well as an emphasis on their in vivo biological safeties. Challenges and future perspectives are ultimately prospected for SACs in diverse biomedical applications.


Assuntos
Nanopartículas , Nanoestruturas , Catálise , Metais , Nanomedicina
20.
J Phys Chem Lett ; 12(16): 3976-3982, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33876935

RESUMO

Doping-related point defect engineering in low-dimensional semiconductor nanostructures is important to regulate their optical and electronic properties. The substitutional or interstitial location of heterovalent dopants is critical and has not been controlled effectively yet. Herein, we carefully control the kinetics of reverse cation exchange between CuxS 2D nanosheets and ligand-coordinated Cd2+ cations to control the Cu doping sites in CdS nanosheets (NSs). The substitutional and interstitial Cu dopants were directly confirmed by spherical aberration-corrected TEM (SACTEM) and their X-ray absorption spectroscopy (XAS) coordination investigation. Density functional theory (DFT) calculations and their experimental conductivities and dopant luminescence performance demonstrated the dramatic differences that are due to the location of different Cu dopants. These findings provide deeper insights on dopants' location regulation in a nanostructured host semiconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA