Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419081

RESUMO

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Assuntos
Diterpenos do Tipo Caurano , Hipertermia Induzida , MicroRNAs , Neoplasias Nasofaríngeas , Animais , Humanos , Neoplasias Nasofaríngeas/patologia , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
2.
Oncoimmunology ; 5(3): e1086060, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27141341

RESUMO

There is an urgent need for more potent and safer approaches to eradicate cancer stem cells (CSCs) for curing cancer. In this study, we investigate cancer-killing activity (CKA) of cytokine-induced killer (CIK) cells against CSCs of hepatocellular carcinoma (HCC). To visualize CSCs in vitro by fluorescence imaging, and image and quantify CSCs in tumor xenograft-bearing mice by bioluminescence imaging, HCC cells were engineered with CSC detector vector encoding GFP and luciferase controlled by Nanog promoter. We found that CIK cells have a strong CKA in vitro against putative CSCs of HCC, as shown by tumorsphere formation and time-lapse imaging. Additionally, time-lapse recording firstly revealed that putative CSCs were attacked simultaneously by many CIK cells and finally eradicated by CIK cells, indicating the necessity of achieving sufficient effector-to-target ratios. We firstly illustrated that anti-NKG2D antibody blocking partially but significantly inhibited CKA of CIK cells against putative CSCs. More importantly, intravenous infusion of CIK cells remarkably delayed tumor growth in mice with a significant decrease in putative CSC number monitored by bioluminescence imaging. Taken together, these findings demonstrate CKA of CIK cells against putative CSCs of HCC, at least in part, by NKG2D-ligands recognition.

3.
Oncotarget ; 6(34): 36713-30, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26452025

RESUMO

Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.


Assuntos
Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Carcinoma , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais , Fatores de Transcrição HES-1/genética
4.
Oncotarget ; 6(33): 35023-39, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26418951

RESUMO

Cancer stem cells (CSCs) are considered to be the root cause for cancer treatment failure. Thus, there remains an urgent need for more potent and safer therapies against CSCs for curing cancer. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against putative CSCs of nasopharyngeal carcinoma (NPC) was fully evaluated in vitro and in vivo. To visualize putative CSCs in vitro by fluorescence imaging, and image and quantify putative CSCs in tumor xenograft-bearing mice by in vivo bioluminescence imaging, NPC cells were engineered with CSC detector vector encoding GFP and luciferase (Luc) under control of Nanog promoter. Our study reported in vitro intense tumor-killing activity of CIK cells against putative CSCs of NPC, as revealed by percentage analysis of side population cells, tumorsphere formation assay and Nanog-promoter-GFP-Luc reporter gene strategy plus time-lapse recording. Additionally, time-lapse imaging firstly illustrated that GFP-labeled or PKH26-labeled putative CSCs or tumorspheres were usually attacked simultaneously by many CIK cells and finally killed by CIK cells, suggesting the necessity of achieving sufficient effector-to-target ratios. We firstly confirmed that NKG2D blockade by anti-NKG2D antibody significantly but partially abrogated CIK cell-mediated cytolysis against putative CSCs. More importantly, intravenous infusion of CIK cells significantly delayed tumor growth in NOD/SCID mice, accompanied by a remarkable reduction in putative CSC number monitored by whole-body bioluminescence imaging. Taken together, our findings suggest that CIK cells demonstrate the intense tumor-killing activity against putative CSCs of NPC, at least in part, by NKG2D-ligands recognition. These results indicate that CIK cell-based therapeutic strategy against CSCs presents a promising and safe approach for cancer treatment.


Assuntos
Células Matadoras Induzidas por Citocinas/transplante , Imunoterapia Adotiva/métodos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias Nasofaríngeas/patologia , Células-Tronco Neoplásicas/patologia , Animais , Western Blotting , Carcinoma , Separação Celular , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Zhonghua Yi Shi Za Zhi ; 43(5): 266-70, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24429033

RESUMO

By Zhuang materia medica, it refers to application of medicines under the instructions of medical theory of Zhuang ethnic group. By studying the pronunciation of the Zhuang language for the terms "zhu yu", "bai jiu", and "mi gu" included in the shan hai jing nan shan jing (The Classic of Southern Mountain in Classic of Seas and Mountains) carried out by the Zhuang scholar Qin Bao-lin, it was concluded that the Zhuang minority already applied medicines early in the pre-Qin period. Through extensive cultural communication in different regions in the Wei-Jin-Southern-Northern Dynasties, the medicinal experiences of the Zhuang ethnic group appeared in ancient literature. The antidotes in Zhou hou fang (Handbook of Prescriptions for Emergency), for instance, were mostly coming from the Southern Ridge area. Since the Sui-Tang Dynasties, many materia medica recorded in the herbal works and regional gazetteers, and Annals such as the Guangxi Annals, Gazetteer of Nanning County, and Gazetteer of Liuzhou County, Gazetteer of Binzhou County etc., also carry medicines such as Cinnamom twigs and bark, and mangosteen etc., which are similar to those of the Zhuang medicines. In the Republican period, many manuscripts of Zhuang medicines appeared. After 1949, many institutions of Zhuang medicine were set up successively, including The Nanning Medical Institute, The Medical Institute of Wuzhou, The Medical Institute of Guilin. Systematic researches were also done, with publication of a series of works on Zhuang materia medica. Reformation of part of the prescription forms of Zhuang medicine were also accomplished.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA