Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(14): 7288-7313, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37378433

RESUMO

We have conducted a detailed transcriptomic, proteomic and phosphoproteomic analysis of CDK8 and its paralog CDK19, alternative enzymatic components of the kinase module associated with transcriptional Mediator complex and implicated in development and diseases. This analysis was performed using genetic modifications of CDK8 and CDK19, selective CDK8/19 small molecule kinase inhibitors and a potent CDK8/19 PROTAC degrader. CDK8/19 inhibition in cells exposed to serum or to agonists of NFκB or protein kinase C (PKC) reduced the induction of signal-responsive genes, indicating a pleiotropic role of Mediator kinases in signal-induced transcriptional reprogramming. CDK8/19 inhibition under basal conditions initially downregulated a small group of genes, most of which were inducible by serum or PKC stimulation. Prolonged CDK8/19 inhibition or mutagenesis upregulated a larger gene set, along with a post-transcriptional increase in the proteins comprising the core Mediator complex and its kinase module. Regulation of both RNA and protein expression required CDK8/19 kinase activities but both enzymes protected their binding partner cyclin C from proteolytic degradation in a kinase-independent manner. Analysis of isogenic cell populations expressing CDK8, CDK19 or their kinase-inactive mutants revealed that CDK8 and CDK19 have the same qualitative effects on protein phosphorylation and gene expression at the RNA and protein levels, whereas differential effects of CDK8 versus CDK19 knockouts were attributable to quantitative differences in their expression and activity rather than different functions.


Assuntos
Quinases Ciclina-Dependentes , Complexo Mediador , Humanos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Fosforilação , Proteômica , RNA/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(32): e2201073119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914167

RESUMO

Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.


Assuntos
Neoplasias da Mama , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Lapatinib/farmacologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Proc Natl Acad Sci U S A ; 115(9): E1973-E1982, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440498

RESUMO

The multidrug transporter ABCB1 (P-glycoprotein) is an ATP-binding cassette transporter that has a key role in protecting tissues from toxic insult and contributes to multidrug extrusion from cancer cells. Here, we report the near-atomic resolution cryo-EM structure of nucleotide-free ABCB1 trapped by an engineered disulfide cross-link between the nucleotide-binding domains (NBDs) and bound to the antigen-binding fragment of the human-specific inhibitory antibody UIC2 and to the third-generation ABCB1 inhibitor zosuquidar. Our structure reveals the transporter in an occluded conformation with a central, enclosed, inhibitor-binding pocket lined by residues from all transmembrane (TM) helices of ABCB1. The pocket spans almost the entire width of the lipid membrane and is occupied exclusively by two closely interacting zosuquidar molecules. The external, conformational epitope facilitating UIC2 binding is also visualized, providing a basis for its inhibition of substrate efflux. Additional cryo-EM structures suggest concerted movement of TM helices from both halves of the transporters associated with closing the NBD gap, as well as zosuquidar binding. Our results define distinct recognition interfaces of ABCB1 inhibitory agents, which may be exploited for therapeutic purposes.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Anticorpos/química , Dibenzocicloeptenos/química , Quinolinas/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Animais , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Epitopos/química , Células HEK293 , Humanos , Ligantes , Camundongos , Conformação Molecular , Mutação , Ligação Proteica , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 114(38): 10208-10213, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28855340

RESUMO

The nuclear factor-κB (NFκB) family of transcription factors has been implicated in inflammatory disorders, viral infections, and cancer. Most of the drugs that inhibit NFκB show significant side effects, possibly due to sustained NFκB suppression. Drugs affecting induced, but not basal, NFκB activity may have the potential to provide therapeutic benefit without associated toxicity. NFκB activation by stress-inducible cell cycle inhibitor p21 was shown to be mediated by a p21-stimulated transcription-regulating kinase CDK8. CDK8 and its paralog CDK19, associated with the transcriptional Mediator complex, act as coregulators of several transcription factors implicated in cancer; CDK8/19 inhibitors are entering clinical development. Here we show that CDK8/19 inhibition by different small-molecule kinase inhibitors or shRNAs suppresses the elongation of NFκB-induced transcription when such transcription is activated by p21-independent canonical inducers, such as TNFα. On NFκB activation, CDK8/19 are corecruited with NFκB to the promoters of the responsive genes. Inhibition of CDK8/19 kinase activity suppresses the RNA polymerase II C-terminal domain phosphorylation required for transcriptional elongation, in a gene-specific manner. Genes coregulated by CDK8/19 and NFκB include IL8, CXCL1, and CXCL2, which encode tumor-promoting proinflammatory cytokines. Although it suppressed newly induced NFκB-driven transcription, CDK8/19 inhibition in most cases had no effect on the basal expression of NFκB-regulated genes or promoters; the same selective regulation of newly induced transcription was observed with other transcription signals potentiated by CDK8/19. This selective role of CDK8/19 identifies these kinases as mediators of transcriptional reprogramming, a key aspect of development and differentiation as well as pathological processes.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , NF-kappa B/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Citocinas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos
5.
Proc Natl Acad Sci U S A ; 109(34): 13799-804, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869755

RESUMO

Conventional chemotherapy not only kills tumor cells but also changes gene expression in treatment-damaged tissues, inducing production of multiple tumor-supporting secreted factors. This secretory phenotype was found here to be mediated in part by a damage-inducible cell-cycle inhibitor p21 (CDKN1A). We developed small-molecule compounds that inhibit damage-induced transcription downstream of p21. These compounds were identified as selective inhibitors of a transcription-regulating kinase CDK8 and its isoform CDK19. Remarkably, p21 was found to bind to CDK8 and stimulate its kinase activity. p21 and CDK8 also cooperate in the formation of internucleolar bodies, where both proteins accumulate. A CDK8 inhibitor suppresses damage-induced tumor-promoting paracrine activities of tumor cells and normal fibroblasts and reverses the increase in tumor engraftment and serum mitogenic activity in mice pretreated with a chemotherapeutic drug. The inhibitor also increases the efficacy of chemotherapy against xenografts formed by tumor cell/fibroblast mixtures. Microarray data analysis revealed striking correlations between CDK8 expression and poor survival in breast and ovarian cancers. CDK8 inhibition offers a promising approach to increasing the efficacy of cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Quinase 8 Dependente de Ciclina/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Senescência Celular , Quinase 8 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Proteínas Quinases Associadas a Fase S/metabolismo , Transcrição Gênica , Resultado do Tratamento
6.
Proc Natl Acad Sci U S A ; 108(30): 12449-54, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746916

RESUMO

Anticancer drugs are effective against tumors that depend on the molecular target of the drug. Known targets of cytotoxic anticancer drugs are involved in cell proliferation; drugs acting on such targets are ineffective against nonproliferating tumor cells, survival of which leads to eventual therapy failure. Function-based genomic screening identified the coatomer protein complex ζ1 (COPZ1) gene as essential for different tumor cell types but not for normal cells. COPZ1 encodes a subunit of coatomer protein complex 1 (COPI) involved in intracellular traffic and autophagy. The knockdown of COPZ1, but not of COPZ2 encoding isoform coatomer protein complex ζ2, caused Golgi apparatus collapse, blocked autophagy, and induced apoptosis in both proliferating and nondividing tumor cells. In contrast, inhibition of normal cell growth required simultaneous knockdown of both COPZ1 and COPZ2. COPZ2 (but not COPZ1) was down-regulated in the majority of tumor cell lines and in clinical samples of different cancer types. Reexpression of COPZ2 protected tumor cells from killing by COPZ1 knockdown, indicating that tumor cell dependence on COPZ1 is the result of COPZ2 silencing. COPZ2 displays no tumor-suppressive activities, but it harbors microRNA 152, which is silenced in tumor cells concurrently with COPZ2 and acts as a tumor suppressor in vitro and in vivo. Silencing of microRNA 152 in different cancers and the ensuing down-regulation of its host gene COPZ2 offer a therapeutic opportunity for proliferation-independent selective killing of tumor cells by COPZ1-targeting agents.


Assuntos
Proteína Coatomer/genética , Neoplasias/genética , Apoptose/genética , Autofagia/genética , Sequência de Bases , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Complexo de Golgi/genética , Complexo de Golgi/patologia , Humanos , Masculino , MicroRNAs/genética , Neoplasias/patologia , Isoformas de Proteínas/genética , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Supressão Genética
7.
J Clin Invest ; 134(10)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546787

RESUMO

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.


Assuntos
Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes , Neoplasias de Próstata Resistentes à Castração , Inibidores de Proteínas Quinases , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Humanos , Animais , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/enzimologia , Camundongos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
8.
J Biol Chem ; 287(13): 9845-9854, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22311974

RESUMO

p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sarcoma/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Morte Celular/genética , Linhagem Celular Tumoral , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Sarcoma/genética , Sarcoma/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética
9.
Proc Natl Acad Sci U S A ; 107(16): 7377-82, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368428

RESUMO

As a general strategy for function-based gene identification, an shRNA library containing approximately 150 shRNAs per gene was enzymatically generated from normalized (reduced-redundance) human cDNA. The library was constructed in an inducible lentiviral vector, enabling propagation of growth-inhibiting shRNAs and controlled activity measurements. RNAi activities were measured for 101 shRNA clones representing 100 human genes and for 201 shRNAs derived from a firefly luciferase gene. Structure-activity analysis of these two datasets yielded a set of structural criteria for shRNA efficacy, increasing the frequencies of active shRNAs up to 5-fold relative to random sampling. The same library was used to select shRNAs that inhibit breast carcinoma cell growth by targeting potential oncogenes. Genes targeted by the selected shRNAs were enriched for 10 pathways, 9 of which have been previously associated with various cancers, cell cycle progression, or apoptosis. One hundred nineteen genes, enriched through this selection and represented by two to six shRNAs each, were identified as potential cancer drug targets. Short interfering RNAs against 19 of 22 tested genes in this group inhibited cell growth, validating the efficiency of this strategy for high-throughput target gene identification.


Assuntos
Neoplasias da Mama/metabolismo , RNA Interferente Pequeno/metabolismo , Análise de Sequência de DNA/métodos , Neoplasias da Mama/genética , Carcinoma/genética , Linhagem Celular Tumoral , DNA/metabolismo , DNA Complementar/metabolismo , Feminino , Biblioteca Gênica , Engenharia Genética/métodos , Técnicas Genéticas , Humanos , Lentivirus/genética , Modelos Genéticos
10.
Viruses ; 15(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376593

RESUMO

Hyperactivation of the immune system remains a dramatic, life-threatening complication of viral and bacterial infections, particularly during pneumonia. Therapeutic approaches to counteract local and systemic outbreaks of cytokine storm and to prevent tissue damage remain limited. Cyclin-dependent kinases 8 and 19 (CDK8/19) potentiate transcriptional responses to the altered microenvironment, but CDK8/19 potential in immunoregulation is not fully understood. In the present study, we investigated how a selective CDK8/19 inhibitor, Senexin B, impacts the immunogenic profiles of monocytic cells stimulated using influenza virus H1N1 or bacterial lipopolysaccharides. Senexin B was able to prevent the induction of gene expression of proinflammatory cytokines in THP1 and U937 cell lines and in human peripheral blood-derived mononuclear cells. Moreover, Senexin B substantially reduced functional manifestations of inflammation, including clustering and chemokine-dependent migration of THP1 monocytes and human pulmonary fibroblasts (HPF).


Assuntos
Vírus da Influenza A Subtipo H1N1 , Monócitos , Humanos , Células U937 , Vírus da Influenza A Subtipo H1N1/metabolismo , Citocinas/metabolismo , Leucócitos Mononucleares/metabolismo
11.
Cancer Cell ; 4(1): 41-53, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12892712

RESUMO

To identify human genes required for tumor cell growth, transcriptome-scale selection was used to isolate genetic suppressor elements (GSEs) inhibiting breast carcinoma cell growth. Growth-inhibitory GSEs (cDNA fragments that counteract their cognate gene) were selected from 57 genes, including known positive regulators of cell growth or carcinogenesis as well as genes that have not been previously implicated in cell proliferation. Many GSE-cognate genes encode transcription factors (such as STAT and AP-1) and signal transduction proteins. Monoclonal antibodies against a cell surface protein identified by GSE selection, neural cell adhesion molecule L1CAM, strongly inhibited the growth of several tumor cell lines but not of untransformed cells. Hence, selection for growth-inhibitory GSEs allows one to find potential targets for new anticancer drugs.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Genes Supressores , Fatores de Transcrição/genética , Anticorpos Monoclonais/imunologia , Neoplasias da Mama/imunologia , Divisão Celular , Clonagem Molecular , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Biblioteca Gênica , Células HeLa , Humanos , Fatores de Transcrição/imunologia , Células Tumorais Cultivadas
12.
Biomater Transl ; 3(2): 152-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105568

RESUMO

Perivascular delivery of therapeutic agents against established aetiologies for occlusive vascular remodelling has great therapeutic potential for vein graft failure. However, none of the perivascular drug delivery systems tested experimentally have been translated into clinical practice. In this study, we established a novel strategy to locally and sustainably deliver the cyclin-dependent kinase 8/19 inhibitor Senexin A (SenA), an emerging drug candidate to treat occlusive vascular disease, using graphene oxide-hybridised hyaluronic acid-based hydrogels. We demonstrated an approach to accommodate SenA in hyaluronic acid-based hydrogels through utilising graphene oxide nanosheets allowing for non-covalent interaction with SenA. The resulting hydrogels produced sustained delivery of SenA over 21 days with tunable release kinetics. In vitro assays also demonstrated that the hydrogels were biocompatible. This novel graphene oxide-incorporated hyaluronic acid hydrogel offers an optimistic outlook as a perivascular drug delivery system for treating occlusive vascular diseases, such as vein graft failure.

13.
J Med Chem ; 65(4): 3420-3433, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35114084

RESUMO

Senexins are potent and selective quinazoline inhibitors of CDK8/19 Mediator kinases. To improve their potency and metabolic stability, quinoline-based derivatives were designed through a structure-guided strategy based on the simulated drug-target docking model of Senexin A and Senexin B. A library of quinoline-Senexin derivatives was synthesized to explore the structure-activity relationship (SAR). An optimized compound 20a (Senexin C) exhibits potent CDK8/19 inhibitory activity with high selectivity. Senexin C is more metabolically stable and provides a more sustained inhibition of CDK8/19-dependent cellular gene expression when compared with the prototype inhibitor Senexin B. In vivo pharmacokinetic (PK) and pharmacodynamic (PD) evaluation using a novel tumor-based PD assay showed good oral bioavailability of Senexin C with a strong tumor-enrichment PK profile and tumor-PD marker responses. Senexin C inhibits MV4-11 leukemia growth in a systemic in vivo model with good tolerability.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Animais , Antineoplásicos/uso terapêutico , Disponibilidade Biológica , Linhagem Celular Tumoral , Humanos , Leucemia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/toxicidade , Quinolinas , Relação Estrutura-Atividade , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202528

RESUMO

PRC2 (Polycomb repressive complex 2) is an evolutionarily conserved protein complex required to maintain transcriptional repression. The core PRC2 complex includes EZH2, SUZ12, and EED proteins and methylates histone H3K27. PRC2 is known to contribute to carcinogenesis and several small molecule inhibitors targeting PRC2 have been developed. The present study aimed to identify the cancer types in which PRC2 targeting drugs could be beneficial. We queried genomic and transcriptomic (cBioPortal, KMplot) database portals of clinical tumor samples to evaluate clinical correlations of PRC2 subunit genes. EZH2, SUZ12, and EED gene amplification was most frequently found in prostate cancer, whereas lymphoid malignancies (DLBCL) frequently showed EZH2 mutations. In both cases, PRC2 alterations were associated with poor prognosis. Moreover, higher expression of PRC2 subunits was correlated with poor survival in renal and liver cancers as well as gliomas. Finally, we generated a Python application to analyze the correlation of EZH2/SUZ12/EED gene knockouts by CRISPR with the alterations detected in the cancer cell lines using DepMap data. As a result, we were able to identify mutations that correlated significantly with tumor cell sensitivity to PRC2 knockout, including SWI/SNF, COMPASS/COMPASS-like subunits and BCL2, warranting the investigation of these genes as potential markers of sensitivity to PRC2-targeting drugs.

15.
Cells ; 10(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445730

RESUMO

Drug resistance is the main obstacle to achieving cures with both conventional and targeted anticancer drugs. The emergence of acquired drug resistance is initially mediated by non-genetic transcriptional changes, which occur at a much higher frequency than mutations and may involve population-scale transcriptomic adaptation. CDK8/19 kinases, through association with transcriptional Mediator complex, regulate transcriptional reprogramming by co-operating with different signal-responsive transcription factors. Here we tested if CDK8/19 inhibition could prevent adaptation to drugs acting on epidermal growth factor receptor (EGFR/ERBB1/HER1). The development of resistance was analyzed following long-term exposure of BT474 and SKBR3 breast cancer cells to EGFR-targeting small molecules (gefitinib, erlotinib) and of SW48 colon cancer cells to an anti-EGFR monoclonal antibody cetuximab. In all cases, treatment of small cell populations (~105 cells) with a single dose of the drug initially led to growth inhibition that was followed by the resumption of proliferation and development of drug resistance in the adapted populations. However, this adaptation was always prevented by the addition of selective CDK8/19 inhibitors, even though such inhibitors alone had only moderate or no effect on cell growth. These results indicate that combining EGFR-targeting drugs with CDK8/19 inhibitors may delay or prevent the development of tumor resistance to therapy.


Assuntos
Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Humanos , Concentração Inibidora 50
16.
BMC Bioinformatics ; 10 Suppl 1: S33, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19208134

RESUMO

BACKGROUND: RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful technique for eukaryotic gene knockdown. siRNA GC-content negatively correlates with RNAi efficiency, and it is of interest to have a convincing mechanistic interpretation of this observation. We here examine this issue by considering the secondary structures for both the target messenger RNA (mRNA) and the siRNA guide strand. RESULTS: By analyzing a unique homogeneous data set of 101 shRNAs targeted to 100 endogenous human genes, we find that: 1) target site accessibility is more important than GC-content for efficient RNAi; 2) there is an appreciable negative correlation between GC-content and RNAi activity; 3) for the predicted structure of the siRNA guide strand, there is a lack of correlation between RNAi activity and either the stability or the number of free dangling nucleotides at an end of the structure; 4) there is a high correlation between target site accessibility and GC-content. For a set of representative structural RNAs, the GC content of 62.6% for paired bases is significantly higher than the GC content of 38.7% for unpaired bases. Thus, for a structured RNA, a region with higher GC content is likely to have more stable secondary structure. Furthermore, by partial correlation analysis, the correlation for GC-content is almost completely diminished, when the effect of target accessibility is controlled. CONCLUSION: These findings provide a target-structure-based interpretation and mechanistic insight for the effect of GC-content on RNAi efficiency.


Assuntos
Interferência de RNA , RNA Mensageiro/química , RNA Interferente Pequeno/química , Composição de Bases , Citosina/análise , Guanina/análise , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA não Traduzido/química , RNA não Traduzido/genética
17.
Cells ; 8(8)2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382571

RESUMO

CDK8 and CDK19 Mediator kinases are transcriptional co-regulators implicated in several types of cancer. Small-molecule CDK8/19 inhibitors have recently entered or are entering clinical trials, starting with breast cancer and acute myeloid leukemia (AML). To identify other cancers where these novel drugs may provide benefit, we queried genomic and transcriptomic databases for potential impact of CDK8, CDK19, or their binding partner CCNC. sgRNA analysis of a panel of tumor cell lines showed that most tumor types represented in the panel, except for some central nervous system tumors, were not dependent on these genes. In contrast, analysis of clinical samples for alterations in these genes revealed a high frequency of gene amplification in two highly aggressive subtypes of prostate cancer and in some cancers of the GI tract, breast, bladder, and sarcomas. Analysis of survival correlations identified a group of cancers where CDK8 expression correlated with shorter survival (notably breast, prostate, cervical cancers, and esophageal adenocarcinoma). In some cancers (AML, melanoma, ovarian, and others), such correlations were limited to samples with a below-median tumor mutation burden. These results suggest that Mediator kinases are especially important in cancers that are driven primarily by transcriptional rather than mutational changes and warrant an investigation of their role in additional cancer types.


Assuntos
Ciclina C/fisiologia , Quinase 8 Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Ciclina C/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
18.
Cells ; 8(11)2019 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717492

RESUMO

CDK8/19 kinases, which mediate transcriptional reprogramming, have become an active target for cancer drug discovery. Several small-molecule CDK8/19 inhibitors showed in vivo efficacy and two have entered clinical trials, with no significant toxicities reported. However, Clarke et al. (eLife 2016; 5; e20722) found severe systemic toxicity associated with two potent CDK8/19 inhibitors, Cmpd3 (CCT251921) and Cmpd4 (MSC2530818), and suggested that their toxicity was due to on-target effects. Here, we compared five CDK8/19 inhibitors: Cmpd3, Cmpd4, Senexin B, 16-didehydro-cortistatin A (dCA) and 15w, in different assays. Only Cmpd4 showed striking toxicity in developing zebrafish. In cell-based assays for CDK8 and CDK19 inhibition, Cmpd3, Cmpd4, dCA and 15w showed similar low-nanomolar potency and efficacy against CDK8 and CDK19, while Senexin B was less potent. Only dCA produced sustained inhibition of CDK8/19-dependent gene expression. While toxicity of different compounds did not correlate with their effects on CDK8 and CDK19, kinome profiling identified several off-target kinases for both Cmpd3 and Cmpd4, which could be responsible for their toxicity. Off-target activities could have been achieved in the study of Clarke et al. due to high in vivo doses of Cmpd3 and Cmpd4, chosen for the ability to inhibit STAT1 S727 phosphorylation in tumor xenografts. We show here that STAT1 S727 phosphorylation is induced by various cytokines and stress stimuli in CDK8/19-independent manner, indicating that it is not a reliable pharmacodynamic marker of CDK8/19 activity. These results illustrate the need for careful off-target analysis and dose selection in the development of CDK8/19 inhibitors.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Animais , Sobrevivência Celular/efeitos dos fármacos , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Peixe-Zebra
19.
Cells ; 8(10)2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590445

RESUMO

Cell-based assays for CDK8/19 inhibition are not easily defined, since there are no known cellular functions unique to these kinases. To solve this problem, we generated derivatives of 293 cells with CRISPR knockout of one or both of CDK8 and CDK19. Double knockout (dKO) of CDK8 and CDK19 together (but not individually) decreased the induction of transcription by NFκB (a CDK8/19-potentiated transcription factor) and abrogated the effect of CDK8/19 inhibitors on such induction. We generated wild type (WT) and dKO cell lines expressing luciferase from an NFκB-dependent promoter. Inhibitors selective for CDK8/19 over other CDKs decreased TNFα-induced luciferase expression in WT cells by ~80% with no effect on luciferase induction in dKO cells. In contrast, non-selective CDK inhibitors flavopiridol and dinaciclib and a CDK7/12/13 inhibitor THZ1 (but not CDK4/6 inhibitor palbociclib) suppressed luciferase induction in both WT and dKO cells, indicating a distinct role for other CDKs in the NFκB pathway. We used this assay to characterize a series of thienopyridines with in vitro bone anabolic activity, one of which was identified as a selective CDK8/19 inhibitor. Thienopyridines inhibited luciferase induction in the WT but not dKO cells and their IC50 values in the WT reporter assay showed near-perfect correlation (R2 = 0.98) with their reported activities in a bone anabolic activity assay, confirming that the latter function is mediated by CDK8/19 and validating our assay as a robust and quantitative method for CDK8/19 inhibition.


Assuntos
Anabolizantes/farmacologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , NF-kappa B/metabolismo , Tienopiridinas/farmacologia , Animais , Bioensaio , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos
20.
Trends Mol Med ; 13(1): 4-11, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17118707

RESUMO

Constitutive activation of STAT3 (signal transducer and activator of transcription) has been reported in several primary cancers and tumor cell lines where it induces cell transformation through a combined inhibition of apoptosis and cell-cycle activation. Several studies have suggested that STAT3 prevents cell-cycle arrest and cell death through upregulation of survival proteins and downregulation of tumor suppressors. As a consequence of anti-apoptotic and proliferative lesions, we propose that this oncogenic pathway is also involved in intrinsic drug resistance and that STAT3-expressing tumors are resistant to chemotherapeutic agents. If this hypothesis is correct, the detection of the activated form of this protein should help to define subsets of tumors that fail to respond to chemotherapy. Furthermore, interfering with the STAT3 oncogenic pathway might restore the sensitivity to anticancer drugs.


Assuntos
Biomarcadores/análise , Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Apoptose/genética , Humanos , Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA