RESUMO
The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) is a Bioinformatics Resource Center funded by the National Institutes of Health with additional funding from the Wellcome Trust. VEuPathDB supports >600 organisms that comprise invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Since 2004, VEuPathDB has analyzed omics data from the public domain using contemporary bioinformatic workflows, including orthology predictions via OrthoMCL, and integrated the analysis results with analysis tools, visualizations, and advanced search capabilities. The unique data mining platform coupled with >3000 pre-analyzed data sets facilitates the exploration of pertinent omics data in support of hypothesis driven research. Comparisons are easily made across data sets, data types and organisms. A Galaxy workspace offers the opportunity for the analysis of private large-scale datasets and for porting to VEuPathDB for comparisons with integrated data. The MapVEu tool provides a platform for exploration of spatially resolved data such as vector surveillance and insecticide resistance monitoring. To address the growing body of omics data and advances in laboratory techniques, VEuPathDB has added several new data types, searches and features, improved the Galaxy workspace environment, redesigned the MapVEu interface and updated the infrastructure to accommodate these changes.
Assuntos
Biologia Computacional , Eucariotos , Animais , Biologia Computacional/métodos , Invertebrados , Bases de Dados FactuaisRESUMO
The Orthology Benchmark Service (https://orthology.benchmarkservice.org) is the gold standard for orthology inference evaluation, supported and maintained by the Quest for Orthologs consortium. It is an essential resource to compare existing and new methods of orthology inference (the bedrock for many comparative genomics and phylogenetic analysis) over a standard dataset and through common procedures. The Quest for Orthologs Consortium is dedicated to maintaining the resource up to date, through regular updates of the Reference Proteomes and increasingly accessible data through the OpenEBench platform. For this update, we have added a new benchmark based on curated orthology assertion from the Vertebrate Gene Nomenclature Committee, and provided an example meta-analysis of the public predictions present on the platform.
Assuntos
Benchmarking , Genômica , Filogenia , Genômica/métodos , ProteomaRESUMO
Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8(+) T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8(+) T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8(+) T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation.
Assuntos
Infecções Bacterianas/imunologia , Efeito Espectador/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Viroses/imunologia , Transferência Adotiva , Animais , Diferenciação Celular/imunologia , Doença Crônica , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas com Domínio T/imunologia , Fatores de Transcrição/imunologiaRESUMO
Interferon-γ (IFN-γ) promotes a population of T-bet(+) CXCR3(+) regulatory T (Treg) cells that limit T helper 1 (Th1) cell-mediated pathology. Our studies demonstrate that interleukin-27 (IL-27) also promoted expression of T-bet and CXCR3 in Treg cells. During infection with Toxoplasma gondii, a similar population emerged that limited T cell responses and was dependent on IFN-γ in the periphery but on IL-27 at mucosal sites. Transfer of Treg cells ameliorated the infection-induced pathology observed in Il27(-/-) mice, and this was dependent on their ability to produce IL-10. Microarray analysis revealed that Treg cells exposed to either IFN-γ or IL-27 have distinct transcriptional profiles. Thus, IFN-γ and IL-27 have different roles in Treg cell biology and IL-27 is a key cytokine that promotes the development of Treg cells specialized to control Th1 cell-mediated immunity at local sites of inflammation.
Assuntos
Interferon gama/farmacologia , Interleucina-17/farmacologia , Salmonelose Animal/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Toxoplasmose Animal/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/imunologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Toxoplasma/imunologia , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologiaRESUMO
MicrobiomeDB (http://microbiomeDB.org) is a data discovery and analysis platform that empowers researchers to fully leverage experimental variables to interrogate microbiome datasets. MicrobiomeDB was developed in collaboration with the Eukaryotic Pathogens Bioinformatics Resource Center (http://EuPathDB.org) and leverages the infrastructure and user interface of EuPathDB, which allows users to construct in silico experiments using an intuitive graphical 'strategy' approach. The current release of the database integrates microbial census data with sample details for nearly 14 000 samples originating from human, animal and environmental sources, including over 9000 samples from healthy human subjects in the Human Microbiome Project (http://portal.ihmpdcc.org/). Query results can be statistically analyzed and graphically visualized via interactive web applications launched directly in the browser, providing insight into microbial community diversity and allowing users to identify taxa associated with any experimental covariate.
Assuntos
Mineração de Dados/métodos , Bases de Dados Genéticas , Microbiota , Biologia de Sistemas , Animais , Simulação por Computador , Conjuntos de Dados como Assunto , Microbiologia Ambiental , Variação Genética , Humanos , Internet , Aplicativos Móveis , Interface Usuário-Computador , Fluxo de TrabalhoRESUMO
The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host-pathogen interactions.
Assuntos
Bases de Dados Genéticas , Eucariotos , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Metagenoma , Metagenômica/métodos , Software , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Proteômica , NavegadorRESUMO
Toxoplasma gondii is an intracellular parasite that causes disseminated infections in fetuses and immunocompromised individuals. Although gene regulation is important for parasite differentiation and pathogenesis, little is known about protein organization in the nucleus. Here we show that the fucose-binding Aleuria aurantia lectin (AAL) binds to numerous punctate structures in the nuclei of tachyzoites, bradyzoites, and sporozoites but not oocysts. AAL also binds to Hammondia and Neospora nuclei but not to more distantly related apicomplexans. Analyses of the AAL-enriched fraction indicate that AAL binds O-linked fucose added to Ser/Thr residues present in or adjacent to Ser-rich domains (SRDs). Sixty-nine Ser-rich proteins were reproducibly enriched with AAL, including nucleoporins, mRNA-processing enzymes, and cell-signaling proteins. Two endogenous SRDs-containing proteins and an SRD-YFP fusion localize with AAL to the nuclear membrane. Superresolution microscopy showed that the majority of the AAL signal localizes in proximity to nuclear pore complexes. Host cells modify secreted proteins with O-fucose; here we describe the O-fucosylation pathway in the nucleocytosol of a eukaryote. Furthermore, these results suggest O-fucosylation is a mechanism by which proteins involved in gene expression accumulate near the NPC.
Assuntos
Fucose/metabolismo , Poro Nuclear/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Ciclo Celular , Linhagem Celular , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Lectinas/metabolismo , Camundongos , Membrana Nuclear/metabolismo , Polissacarídeos/metabolismo , Domínios Proteicos , Proteínas de Protozoários/química , Especificidade da EspécieRESUMO
To understand lymphocyte behavior in the brain, we used two-photon microscopy to visualize effector CD8(+) T cells during toxoplasmic encephalitis. These cells displayed multiple behaviors with two distinct populations of cells apparent: one with a constrained pattern of migration and one with a highly migratory subset. The proportion of these populations varied over time associated with changes in antigen availability as well as T cell expression of the inhibitory receptor PD1. Unexpectedly, the movement of infiltrating cells was closely associated with an infection-induced reticular system of fibers. This observation suggests that, whereas in other tissues pre-existing scaffolds exist that guide lymphocyte migration, in the brain specialized structures are induced by inflammation that guide migration of T cells in this immune-privileged environment.
Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/imunologia , Toxoplasma/imunologia , Toxoplasmose Cerebral/imunologia , Toxoplasmose Cerebral/parasitologia , Animais , Sistema Nervoso Central/imunologia , Camundongos , Ratos , Toxoplasmose Cerebral/patologiaRESUMO
The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."
Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Transcrição STAT1/metabolismo , Toxoplasma/imunologia , Animais , Encéfalo/metabolismo , Infecções do Sistema Nervoso Central/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/metabolismo , Doença Crônica , Interferon gama/metabolismo , Camundongos Endogâmicos CBARESUMO
The protozoan parasite Toxoplasma gondii develops within a parasitophorous vacuole (PV) in mammalian cells, where it scavenges cholesterol. When cholesterol is present in excess in its environment, the parasite expulses this lipid into the PV or esterifies it for storage in lipid bodies. Here, we characterized a unique T. gondii homologue of mammalian lecithin:cholesterol acyltransferase (LCAT), a key enzyme that produces cholesteryl esters via transfer of acyl groups from phospholipids to the 3-OH of free cholesterol, leading to the removal of excess cholesterol from tissues. TgLCAT contains a motif characteristic of serine lipases "AHSLG" and the catalytic triad consisting of serine, aspartate, and histidine (SDH) from LCAT enzymes. TgLCAT is secreted by the parasite, but unlike other LCAT enzymes it is cleaved into two proteolytic fragments that share the residues of the catalytic triad and need to be reassembled to reconstitute enzymatic activity. TgLCAT uses phosphatidylcholine as substrate to form lysophosphatidylcholine that has the potential to disrupt membranes. The released fatty acid is transferred to cholesterol, but with a lower transesterification activity than mammalian LCAT. TgLCAT is stored in a subpopulation of dense granule secretory organelles, and following secretion, it localizes to the PV and parasite plasma membrane. LCAT-null parasites have impaired growth in vitro, reduced virulence in animals, and exhibit delays in egress from host cells. Parasites overexpressing LCAT show increased virulence and faster egress. These observations demonstrate that TgLCAT influences the outcome of an infection, presumably by facilitating replication and egress depending on the developmental stage of the parasite.
Assuntos
Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Toxoplasmose/enzimologia , Domínio Catalítico , Linhagem Celular , Humanos , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/patologiaRESUMO
All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.
Assuntos
Evolução Biológica , Biologia Celular , Células/química , Células/metabolismo , Animais , Archaea/química , Archaea/citologia , Archaea/metabolismo , Bactérias/química , Bactérias/citologia , Bactérias/metabolismo , Eucariotos/química , Eucariotos/citologia , Eucariotos/metabolismo , HumanosRESUMO
Unlike most cells, protozoa in the phylum Apicomplexa divide by a distinctive process in which multiple daughters are assembled within the mother (schizogony or endodyogeny), using scaffolding known as the inner membrane complex (IMC). The IMC underlies the plasma membrane during interphase, but new daughters develop in the cytoplasm, as cytoskeletal filaments associate with flattened membrane cisternae (alveolae), which elongate rapidly to encapsulate subcellular organelles. Newly assembled daughters acquire their plasma membrane as they emerge from the mother, leaving behind vestiges of the maternal cell. Although the maternal plasma membrane remains intact throughout this process, the maternal IMC disappears - is it degraded, or recycled to form the daughter IMC? Exploiting fluorescently tagged IMC markers, we have used live-cell imaging, fluorescence recovery after photobleaching (FRAP) and mEos2 photoactivation to monitor the dynamics of IMC biogenesis and turnover during the replication of Toxoplasma gondii tachyzoites. These studies reveal that the formation of the T. gondii IMC involves two distinct steps - de novo assembly during daughter IMC elongation within the mother cell, followed by recycling of maternal IMC membranes after the emergence of daughters from the mother cell.
Assuntos
Divisão Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Células Cultivadas , Recuperação de Fluorescência Após Fotodegradação , Humanos , Ligação Proteica , Imagem com Lapso de TempoRESUMO
Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library-many of which showed potent in vitro activity against drug-resistant P. falciparum strains-and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.
Assuntos
Antimaláricos/análise , Antimaláricos/farmacologia , Descoberta de Drogas , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Animais , Antimaláricos/isolamento & purificação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos/efeitos dos fármacos , Quimioterapia Combinada , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Fenótipo , Filogenia , Plasmodium falciparum/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologiaRESUMO
Proteomics data can supplement genome annotation efforts, for example being used to confirm gene models or correct gene annotation errors. Here, we present a large-scale proteogenomics study of two important apicomplexan pathogens: Toxoplasma gondii and Neospora caninum. We queried proteomics data against a panel of official and alternate gene models generated directly from RNASeq data, using several newly generated and some previously published MS datasets for this meta-analysis. We identified a total of 201 996 and 39 953 peptide-spectrum matches for T. gondii and N. caninum, respectively, at a 1% peptide FDR threshold. This equated to the identification of 30 494 distinct peptide sequences and 2921 proteins (matches to official gene models) for T. gondii, and 8911 peptides/1273 proteins for N. caninum following stringent protein-level thresholding. We have also identified 289 and 140 loci for T. gondii and N. caninum, respectively, which mapped to RNA-Seq-derived gene models used in our analysis and apparently absent from the official annotation (release 10 from EuPathDB) of these species. We present several examples in our study where the RNA-Seq evidence can help in correction of the current gene model and can help in discovery of potential new genes. The findings of this study have been integrated into the EuPathDB. The data have been deposited to the ProteomeXchange with identifiers PXD000297and PXD000298.
Assuntos
Genômica/métodos , Neospora/genética , Neospora/metabolismo , Proteômica/métodos , Toxoplasma/genética , Toxoplasma/metabolismo , Sequência de Aminoácidos , Apicomplexa/genética , Apicomplexa/metabolismo , Bases de Dados Genéticas , Genes de Protozoários/genética , Anotação de Sequência Molecular/métodos , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de RNA/métodos , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodosRESUMO
Disease progression in response to infection can be strongly influenced by both pathogen burden and infection-induced immunopathology. While current therapeutics focus on augmenting protective immune responses, identifying therapeutics that reduce infection-induced immunopathology are clearly warranted. Despite the apparent protective role for murine CD8⺠T cells following infection with the intracellular parasite Leishmania, CD8⺠T cells have been paradoxically linked to immunopathological responses in human cutaneous leishmaniasis. Transcriptome analysis of lesions from Leishmania braziliensis patients revealed that genes associated with the cytolytic pathway are highly expressed and CD8⺠T cells from lesions exhibited a cytolytic phenotype. To determine if CD8⺠T cells play a causal role in disease, we turned to a murine model. These studies revealed that disease progression and metastasis in L. braziliensis infected mice was independent of parasite burden and was instead directly associated with the presence of CD8⺠T cells. In mice with severe pathology, we visualized CD8⺠T cell degranulation and lysis of L. braziliensis infected cells. Finally, in contrast to wild-type CD8⺠T cells, perforin-deficient cells failed to induce disease. Thus, we show for the first time that cytolytic CD8⺠T cells mediate immunopathology and drive the development of metastatic lesions in cutaneous leishmaniasis.
Assuntos
Citotoxicidade Imunológica , Modelos Animais de Doenças , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Pele/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brasil , Progressão da Doença , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leishmania braziliensis/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/fisiopatologia , Leishmaniose Tegumentar Difusa/etiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pele/parasitologia , Pele/patologia , Organismos Livres de Patógenos Específicos , Linfócitos T Citotóxicos/parasitologia , Linfócitos T Citotóxicos/patologiaRESUMO
The new release of SchistoDB (http://SchistoDB.net) provides a rich resource of genomic data for key blood flukes (genus Schistosoma) which cause disease in hundreds of millions of people worldwide. SchistoDB integrates whole-genome sequence and annotation of three species of the genus and provides enhanced bioinformatics analyses and data-mining tools. A simple, yet comprehensive web interface provided through the Strategies Web Development Kit is available for the mining and visualization of the data. Genomic scale data can be queried based on BLAST searches, annotation keywords and gene ID searches, gene ontology terms, sequence motifs, protein characteristics and phylogenetic relationships. Search strategies can be saved within a user's profile for future retrieval and may also be shared with other researchers using a unique web address.
Assuntos
Bases de Dados Genéticas , Genoma Helmíntico , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Schistosoma mansoni/genética , Animais , Genômica , InternetRESUMO
EuPathDB (http://eupathdb.org) resources include 11 databases supporting eukaryotic pathogen genomic and functional genomic data, isolate data and phylogenomics. EuPathDB resources are built using the same infrastructure and provide a sophisticated search strategy system enabling complex interrogations of underlying data. Recent advances in EuPathDB resources include the design and implementation of a new data loading workflow, a new database supporting Piroplasmida (i.e. Babesia and Theileria), the addition of large amounts of new data and data types and the incorporation of new analysis tools. New data include genome sequences and annotation, strand-specific RNA-seq data, splice junction predictions (based on RNA-seq), phosphoproteomic data, high-throughput phenotyping data, single nucleotide polymorphism data based on high-throughput sequencing (HTS) and expression quantitative trait loci data. New analysis tools enable users to search for DNA motifs and define genes based on their genomic colocation, view results from searches graphically (i.e. genes mapped to chromosomes or isolates displayed on a map) and analyze data from columns in result tables (word cloud and histogram summaries of column content). The manuscript herein describes updates to EuPathDB since the previous report published in NAR in 2010.
Assuntos
Bases de Dados Genéticas , Parasitos/genética , Animais , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo , Piroplasmida/genética , Polimorfismo de Nucleotídeo Único , Proteômica , Locos de Características Quantitativas , Sítios de Splice de RNA , Análise de Sequência de RNA , SoftwareRESUMO
As biomedical research becomes increasingly data-intensive, it is increasingly essential to integrate genomic-scale datasets, so as to generate a more holistic picture of complex biological processes. The systems biology paradigm may differ in strategy from traditional reductionist scientific methods, but the goal remains the same: to generate tenable hypotheses driving the experimental elucidation of biological mechanisms. Intracellular pathogens provide an excellent opportunity for systems analysis, as many of these organisms are amenable to genetic manipulation, allowing their biology to be played off against that of the host. Moreover, many of the most fundamental biological properties of these microbes (host cell invasion, immune evasion, intracellular replication, long-term persistence) are directly linked to pathogenesis and readily quantifiable using genomic-scale technologies. In this review, we summarize and discuss some of the available and foreseeable functional genomics datasets pertaining to host-pathogen interactions and suggest that the host-pathogen interface represents a promising, tractable challenge for systems biological analysis. Success will require developing and leveraging new technologies, expanding data acquisition, and increasing public access to comprehensive datasets, to assemble quantitative and testable models of the host-pathogen relationship.
Assuntos
Bactérias/patogenicidade , Interações Hospedeiro-Patógeno , Biologia de Sistemas , Archaea/patogenicidade , Eucariotos/patogenicidade , Humanos , Análise Serial de ProteínasRESUMO
Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species.
Assuntos
Coccidiose/parasitologia , Genômica , Neospora/genética , Toxoplasma/genética , Toxoplasmose/parasitologia , Animais , Coccidiose/transmissão , Hibridização Genômica Comparativa , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/fisiologia , Transmissão Vertical de Doenças Infecciosas , Neospora/patogenicidade , Toxoplasma/patogenicidade , Toxoplasmose/transmissão , Virulência , Zoonoses/transmissãoRESUMO
The TDR Targets Database (http://tdrtargets.org) has been designed and developed as an online resource to facilitate the rapid identification and prioritization of molecular targets for drug development, focusing on pathogens responsible for neglected human diseases. The database integrates pathogen specific genomic information with functional data (e.g. expression, phylogeny, essentiality) for genes collected from various sources, including literature curation. This information can be browsed and queried using an extensive web interface with functionalities for combining, saving, exporting and sharing the query results. Target genes can be ranked and prioritized using numerical weights assigned to the criteria used for querying. In this report we describe recent updates to the TDR Targets database, including the addition of new genomes (specifically helminths), and integration of chemical structure, property and bioactivity information for biological ligands, drugs and inhibitors and cheminformatic tools for querying and visualizing these chemical data. These changes greatly facilitate exploration of linkages (both known and predicted) between genes and small molecules, yielding insight into whether particular proteins may be druggable, effectively allowing the navigation of chemical space in a genomics context.