RESUMO
Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.
Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Convalescença , Imunidade Adaptativa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Progressão da Doença , Feminino , Humanos , Imunidade Inata/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Transcriptoma , Adulto Jovem , Síndrome de COVID-19 Pós-AgudaRESUMO
We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.
Assuntos
COVID-19 , Genômica , RNA-Seq , SARS-CoV-2 , Análise de Célula Única , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Índice de Gravidade de DoençaRESUMO
BACKGROUND: The impact of remdesivir (RDV) on mortality rates in coronavirus disease 2019 (COVID-19) is controversial, and the mortality effect in subgroups of baseline disease severity has been incompletely explored. The purpose of this study was to assess the association of RDV with mortality rates in patients with COVID-19. METHODS: In this retrospective cohort study we compared persons receiving RDV with those receiving best supportive care (BSC). Patients hospitalized between 28 February and 28 May 2020 with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection were included with the development of COVID-19 pneumonia on chest radiography and hypoxia requiring supplemental oxygen or oxygen saturation ≤94% with room air. The primary outcome was overall survival, assessed with time-dependent Cox proportional hazards regression and multivariable adjustment, including calendar time, baseline patient characteristics, corticosteroid use, and random effects for hospital. RESULTS: A total of 1138 patients were enrolled, including 286 who received RDV and 852 treated with BSC, 400 of whom received hydroxychloroquine. Corticosteroids were used in 20.4% of the cohort (12.6% in RDV and 23% in BSC). Comparing persons receiving RDV with those receiving BSC, the hazard ratio (95% confidence interval) for death was 0.46 (.31-.69) in the univariate model (P < .001) and 0.60 (.40-.90) in the risk-adjusted model (P = .01). In the subgroup of persons with baseline use of low-flow oxygen, the hazard ratio (95% confidence interval) for death in RDV compared with BSC was 0.63 (.39-1.00; P = .049). CONCLUSION: Treatment with RDV was associated with lower mortality rates than BSC. These findings remain the same in the subgroup with baseline use of low-flow oxygen.
Assuntos
Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Humanos , Oxigênio , Estudos Retrospectivos , SARS-CoV-2RESUMO
BACKGROUND: Data on the characteristics of coronavirus disease 2019 (COVID-19) patients disaggregated by race/ethnicity remains limited. We evaluated the sociodemographic and clinical characteristics of patients across racial/ethnic groups and assessed their associations with COVID-19 outcomes. METHODS: This retrospective cohort study examined 629 953 patients tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a large health system spanning California, Oregon, and Washington between March 1 and December 31, 2020. Sociodemographic and clinical characteristics were obtained from electronic health records. Odds of SARS-CoV-2 infection, COVID-19 hospitalization, and in-hospital death were assessed with multivariate logistic regression. RESULTS: A total of 570 298 patients with known race/ethnicity were tested for SARS-CoV-2, of whom 27.8% were non-White minorities: 54 645 individuals tested positive, with minorities representing 50.1%. Hispanics represented 34.3% of infections but only 13.4% of tests. Although generally younger than White patients, Hispanics had higher rates of diabetes but fewer other comorbidities. A total of 8536 patients were hospitalized and 1246 died, of whom 56.1% and 54.4% were non-White, respectively. Racial/ethnic distributions of outcomes across the health system tracked with state-level statistics. Increased odds of testing positive and hospitalization were associated with all minority races/ethnicities. Hispanic patients also exhibited increased morbidity, and Hispanic race/ethnicity was associated with in-hospital mortality (odds ratio [OR], 1.39; 95% confidence interval [CI], 1.14-1.70). CONCLUSION: Major healthcare disparities were evident, especially among Hispanics who tested positive at a higher rate, required excess hospitalization and mechanical ventilation, and had higher odds of in-hospital mortality despite younger age. Targeted, culturally responsive interventions and equitable vaccine development and distribution are needed to address the increased risk of poorer COVID-19 outcomes among minority populations.
Assuntos
COVID-19 , Etnicidade , Mortalidade Hospitalar , Hospitalização , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Desenvolvimento de VacinasRESUMO
OBJECTIVE: There is uncertainty around the safety of SSRIs for treating depression during pregnancy. Nevertheless, the use of SSRIs has been gradually increasing, especially during the COVID-19 pandemic period. We aimed to (1) characterize maternal depression rate and use of SSRIs in a recent 10-year period, (2) address confounding by indication, as well as socioeconomic and environmental factors, and (3) evaluate associations of the timing of SSRI exposure in pregnancy with risk for preterm birth (PTB), low birthweight (LBW), and small for gestational age (SGA) infants among women with depression before pregnancy. METHODS: We conducted propensity score-adjusted regression to calculate odds ratios (ORs) of PTB, LBW, and SGA. We accounted for maternal/pregnancy characteristics, comorbidity, depression severity, time of delivery, social vulnerability, and rural residence. RESULTS: There were 50.3% and 40.3% increases in the prevalence rate of prenatal depression and prenatal SSRI prescription rate during the pandemic. We identified women with depression ≤180 days before pregnancy (n = 8406). Women with no SSRI order during pregnancy (n = 3760) constituted the unexposed group. The late SSRI exposure group consisted of women with an SSRI order after the first trimester (n = 3759). The early-only SSRI exposure group consisted of women with SSRI orders only in the first trimester (n = 887). The late SSRI exposure group had an increased risk of PTB of OR = 1.5 ([1.2,1.8]) and LBW of OR = 1.5 ([1.2,2.0]), relative to the unexposed group. Associations between late SSRI exposure and risk of PTB/LBW were similar among a subsample of patients who delivered during the pandemic. CONCLUSIONS: These findings suggest an association between PTB/LBW and SSRI exposure is dependent on exposure timing during pregnancy. Small for gestational age is not associated with SSRI exposure.
Assuntos
COVID-19 , Doenças do Recém-Nascido , Complicações na Gravidez , Nascimento Prematuro , Gravidez , Lactente , Recém-Nascido , Humanos , Feminino , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Pandemias , Complicações na Gravidez/epidemiologia , COVID-19/epidemiologia , Retardo do Crescimento Fetal/epidemiologia , Doenças do Recém-Nascido/epidemiologiaRESUMO
Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions. In an independent dataset, the TRN model predicted target gene expression with an out-of-sample R2 greater than 0.25 for 73% of target genes. We performed siRNA knockdowns of four TFs and achieved concordance between the predicted gene targets in our TRN and differences in expression of knockdowns with an accuracy of >0.7 for three of the four TFs. Our final model contained 113,158 interactions across 391 TFs and 7712 target genes and is publicly available. We identified 29 TFs which were significantly enriched as regulators for genes previously associated with preterm birth, and eight of these TFs were decreased in preterm placentas.
Assuntos
Redes Reguladoras de Genes , Genoma Humano , Placenta , Fatores de Transcrição , Humanos , Placenta/metabolismo , Feminino , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Regulação da Expressão Gênica , Perfilação da Expressão GênicaRESUMO
BACKGROUND: COVID-19 in pregnant people increases the risk for poor maternal-fetal outcomes. However, COVID-19 vaccination hesitancy remains due to concerns over the vaccine's potential effects on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and boosters on maternal SARS-CoV-2 infections and birth outcomes. METHODS: This was a retrospective multicentre cohort study on the impact of COVID-19 vaccination on maternal-fetal outcomes for people who delivered (n=106 428) at Providence St Joseph Health across seven western US states from Jan 26, 2021 to Oct 26, 2022. Cohorts were defined by vaccination status at delivery: vaccinated (n=35 926; two or more doses of mRNA-1273 Moderna or BNT162b2 Pfizer-BioNTech), unvaccinated (n=55 878), unvaccinated propensity score matched (n=16 771), boosted (n=10 927; three or more doses), vaccinated unboosted (n=13 243; two doses only), and vaccinated unboosted with propensity score matching (n=4414). We built supervised machine learning classification models, which we used to determine which people were more likely to be vaccinated or boosted at delivery. The primary outcome was maternal SARS-CoV-2 infection. COVID-19 vaccination status at delivery, COVID-19-related health care, preterm birth, stillbirth, and very low birthweight were evaluated as secondary outcomes. FINDINGS: Vaccinated people were more likely to conceive later in the pandemic, have commercial insurance, be older, live in areas with lower household composition vulnerability, and have a higher BMI than unvaccinated people. Boosted people were more likely to have more days since receiving the second COVID-19 vaccine dose, conceive earlier in the pandemic, have commercial insurance, be older, and live in areas with lower household composition vulnerability than vaccinated unboosted people. Vaccinated pregnant people had lower rates of COVID-19 during pregnancy (4·0%) compared with unvaccinated matched people (5·3%; p<0·0001). COVID-19 rates were even lower in boosted people (3·2%) compared with vaccinated unboosted matched people (5·6%; p<0·0001). Vaccinated people were also less likely to have a preterm birth (7·9%; p<0·0001), stillbirth (0·3%; p<0·0002), or very low birthweight neonate (1·0%; p<0·0001) compared with unvaccinated matched people (preterm birth 9·4%; stillbirth 0·6%; very low birthweight 1·5%). Boosted people were less likely to have a stillbirth (0·3%; p<0·025) and have no differences in rates of preterm birth (7·6%; p=0·090) or very low birthweight neonates (0·8%; p=0·092) compared with vaccinated unboosted matched people (stillbirth 0·5%; preterm birth 8·4%; very low birthweight 1·1%). INTERPRETATION: COVID-19 vaccination protects against adverse maternal-fetal outcomes, with booster doses conferring additional protection. Pregnant people should be high priority for vaccination and stay up to date with their COVID-19 vaccination schedule. FUNDING: National Institute for Child Health & Human Development and the William O and K Carole Ellison Foundation.
Assuntos
COVID-19 , Nascimento Prematuro , Recém-Nascido , Criança , Feminino , Gravidez , Humanos , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Coortes , Nascimento Prematuro/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Natimorto/epidemiologiaRESUMO
BACKGROUND: The impact of maternal SARS-CoV-2 infection remains unclear. In this study, we evaluated the risk of maternal SARS-CoV-2 infection on birth outcomes and how this is modulated by the pregnancy trimester in which the infection occurs. We also developed models to predict gestational age at delivery for people following a SARS-CoV-2 infection during pregnancy. METHODS: We did a retrospective cohort study of the impact of maternal SARS-CoV-2 infection on birth outcomes. We used clinical data from Providence St Joseph Health electronic health records for pregnant people who delivered in the USA at the Providence, Swedish, or Kadlec sites in Alaska, California, Montana, Oregon, or Washington. The SARS-CoV-2 positive cohort included people who had a positive SARS-CoV-2 PCR-based test during pregnancy, subdivided by trimester of infection. No one in this cohort had been vaccinated for COVID-19 at time of infection. The SARS-CoV-2 negative cohort were people with at least one negative SARS-CoV-2 PCR-based test and no positive tests during pregnancy. Cohorts were matched on common covariates impacting birth outcomes, and univariate and multivariate analysis were done to investigate risk factors and predict outcomes. The primary outcome was gestational age at delivery with annotation of preterm birth classification. We trained multiple supervised learning models on 24 features of the SARS-CoV-2 positive cohort to evaluate performance and feature importance for each model and discuss the impact of SARS-CoV-2 infection on gestational age at delivery. FINDINGS: Between March 5, 2020, and July 4, 2021, 73 666 pregnant people delivered, 18 335 of whom had at least one SARS-CoV-2 test during pregnancy before Feb 14, 2021. We observed 882 people infected with SARS-CoV-2 during their pregnancy (first trimester n=85; second trimester n=226; and third trimester n=571) and 19 769 people who have never tested positive for SARS-CoV-2 and received at least one negative SARS-CoV-2 test during their pregnancy. SARS-CoV-2 infection indicated an increased risk of preterm delivery (p<0·05) and stillbirth (p<0·05), accounted for primarily by first and second trimester SARS-CoV-2 infections. Gestational age at SARS-CoV-2 infection was correlated with gestational age at delivery (p<0·01) and had the greatest impact on predicting gestational age at delivery. The people in this study had mild or moderate SARS-CoV-2 infections and acute COVID-19 severity was not correlated with gestational age at delivery (p=0·31). INTERPRETATION: These results suggest that pregnant people would benefit from increased monitoring and enhanced prenatal care after first or second trimester SARS-CoV-2 infection, regardless of acute COVID-19 severity. FUNDING: US National Institutes of Health.
Assuntos
COVID-19/epidemiologia , Idade Gestacional , Complicações Infecciosas na Gravidez/epidemiologia , Resultado da Gravidez/epidemiologia , Trimestres da Gravidez , Nascimento Prematuro , Adulto , COVID-19/diagnóstico , Estudos de Coortes , Feminino , Humanos , Modelos Estatísticos , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Estados Unidos/epidemiologiaRESUMO
Background: COVID-19 infection in pregnant people has previously been shown to increase the risk for poor maternal-fetal outcomes. Despite this, there has been a lag in COVID-19 vaccination in pregnant people due to concerns over the potential effects of the vaccine on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and booster on maternal COVID-19 breakthrough infections and birth outcomes. Methods: This was a retrospective multicenter cohort study on the impact of COVID-19 vaccination on maternal-fetal outcomes for people that delivered (n=86,833) at Providence St. Joseph Health across Alaska, California, Montana, Oregon, New Mexico, Texas, and Washington from January 26, 2021 through July 11, 2022. Cohorts were defined by vaccination status at time of delivery: unvaccinated (n=48,492), unvaccinated propensity score matched (n=26,790), vaccinated (n=26,792; two doses of mRNA-1273 Moderna or BNT162b2 Pfizer-BioNTech), and/or boosted (n=7,616). The primary outcome was maternal COVID-19 infection. COVID-19 vaccination status at delivery, COVID-19 infection-related health care, preterm birth (PTB), stillbirth, very low birth weight (VLBW), and small for gestational age (SGA) were evaluated as secondary outcomes. Findings: Vaccinated pregnant people were significantly less likely to have a maternal COVID-19 infection than unvaccinated matched (p<0.0001) pregnant people. During a maternal COVID-19 infection, vaccinated pregnant people had similar rates of hospitalization (p=0.23), but lower rates of supplemental oxygen (p<0.05) or vasopressor (p<0.05) use than those in an unvaccinated matched cohort. Compared to an unvaccinated matched cohort, vaccinated people had significantly lower stillbirth rate (p<0.01) as well as no difference in rate of PTB (p=0.35), SGA (p=0.79), or rate of VLBW (>1,500 g; 0.31). Vaccinated people who were boosted had significantly lower rates of maternal COVID-19 infections (p<0.0001), COVID-19 related hospitalization (p<0.05), PTB (p<0.05), stillbirth (p<0.01), SGA (p<0.05), and VLBW (p<0.01), compared to vaccinated people that did not receive a third booster dose five months after completing the initial vaccination series. Interpretation: COVID-19 vaccination protects against adverse maternal-fetal outcomes with booster doses conferring additional protection against COVID-19 infection. It is therefore important for pregnant people to have high priority status for vaccination, and for them to stay current with their COVID-19 vaccination schedule. Funding: This study was funded by the National Institute for Child Health & Human Development and the William O. and K. Carole Ellison Foundation.
RESUMO
Background: Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin-II receptor blockers (ARB), the most commonly prescribed antihypertensive medications, counter renin-angiotensin-aldosterone system (RAAS) activation via induction of angiotensin-converting enzyme 2 (ACE2) expression. Considering that ACE2 is the functional receptor for SARS-CoV-2 entry into host cells, the association of ACEi and ARB with COVID-19 outcomes needs thorough evaluation. Methods: We conducted retrospective analyses using both unmatched and propensity score (PS)-matched cohorts on electronic health records (EHRs) to assess the impact of RAAS inhibitors on the risk of receiving invasive mechanical ventilation (IMV) and 30-day mortality among hospitalized COVID-19 patients. Additionally, we investigated the immune cell gene expression profiles of hospitalized COVID-19 patients with prior use of antihypertensive treatments from an observational prospective cohort. Results: The retrospective analysis revealed that there was no increased risk associated with either ACEi or ARB use. In fact, the use of ACEi showed decreased risk for mortality. Survival analyses using PS-matched cohorts suggested no significant relationship between RAAS inhibitors with a hospital stay and in-hospital mortality compared to non-RAAS medications and patients not on antihypertensive medications. From the analysis of gene expression profiles, we observed a noticeable up-regulation in the expression of 1L1R2 (an anti-inflammatory receptor) and RETN (an immunosuppressive marker) genes in monocytes among prior users of ACE inhibitors. Conclusion: Overall, the findings do not support the discontinuation of ACEi or ARB treatment and suggest that ACEi may moderate the COVID-19 hyperinflammatory response.
RESUMO
Risk stratification for hospitalized adults with COVID-19 is essential to inform decisions about individual patients and allocation of resources. So far, risk models for severe COVID outcomes have included age but have not been optimized to best serve the needs of either older or younger adults. Models also need to be updated to reflect improvements in COVID-19 treatments. This retrospective study analyzed data from 6906 hospitalized adults with COVID-19 from a community health system across five states in the western United States. Risk models were developed to predict mechanical ventilation illness or death across one to 56 days of hospitalization, using clinical data available within the first hour after either admission with COVID-19 or a first positive SARS-CoV-2 test. For the seven-day interval, models for age ≥ 18 and < 50 years reached AUROC 0.81 (95% CI 0.71-0.91) and models for age ≥ 50 years reached AUROC 0.82 (95% CI 0.77-0.86). Models revealed differences in the statistical significance and relative predictive value of risk factors between older and younger patients including age, BMI, vital signs, and laboratory results. In addition, for hospitalized patients, sex and chronic comorbidities had lower predictive value than vital signs and laboratory results.
Assuntos
COVID-19 , Adulto , COVID-19/epidemiologia , Hospitalização , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Estados UnidosRESUMO
Clinical, biomedical, and translational science has reached an inflection point in the breadth and diversity of available data and the potential impact of such data to improve human health and well-being. However, the data are often siloed, disorganized, and not broadly accessible due to discipline-specific differences in terminology and representation. To address these challenges, the Biomedical Data Translator Consortium has developed and tested a pilot knowledge graph-based "Translator" system capable of integrating existing biomedical data sets and "translating" those data into insights intended to augment human reasoning and accelerate translational science. Having demonstrated feasibility of the Translator system, the Translator program has since moved into development, and the Translator Consortium has made significant progress in the research, design, and implementation of an operational system. Herein, we describe the current system's architecture, performance, and quality of results. We apply Translator to several real-world use cases developed in collaboration with subject-matter experts. Finally, we discuss the scientific and technical features of Translator and compare those features to other state-of-the-art, biomedical graph-based question-answering systems.
RESUMO
Background: Data on the characteristics of COVID-19 patients disaggregated by race/ethnicity remain limited. We evaluated the sociodemographic and clinical characteristics of patients across racial/ethnic groups and assessed their associations with COVID-19 outcomes. Methods: This retrospective cohort study examined 629,953 patients tested for SARS-CoV-2 in a large health system spanning California, Oregon, and Washington between March 1 and December 31, 2020. Sociodemographic and clinical characteristics were obtained from electronic health records. Odds of SARS-CoV-2 infection, COVID-19 hospitalization, and in-hospital death were assessed with multivariate logistic regression. Results: 570,298 patients with known race/ethnicity were tested for SARS-CoV-2, of whom 27.8% were non-White minorities. 54,645 individuals tested positive, with minorities representing 50.1%. Hispanics represented 34.3% of infections but only 13.4% of tests. While generally younger than White patients, Hispanics had higher rates of diabetes but fewer other comorbidities. 8,536 patients were hospitalized and 1,246 died, of whom 56.1% and 54.4% were non-White, respectively. Racial/ethnic distributions of outcomes across the health system tracked with state-level statistics. Increased odds of testing positive and hospitalization were associated with all minority races/ethnicities. Hispanic patients also exhibited increased morbidity, and Hispanic race/ethnicity was associated with in-hospital mortality (OR: 1.39 [95% CI: 1.14-1.70]). Conclusion: Major healthcare disparities were evident, especially among Hispanics who tested positive at a higher rate, required excess hospitalization and mechanical ventilation, and had higher odds of in-hospital mortality despite younger age. Targeted, culturally-responsive interventions and equitable vaccine development and distribution are needed to address the increased risk of poorer COVID-19 outcomes among minority populations.
RESUMO
Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology.
Assuntos
Algoritmos , Fenômenos Fisiológicos Celulares/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Simulação por Computador , Cinética , Dinâmica não LinearRESUMO
Host immune responses play central roles in controlling SARS-CoV2 infection, yet remain incompletely characterized and understood. Here, we present a comprehensive immune response map spanning 454 proteins and 847 metabolites in plasma integrated with single-cell multi-omic assays of PBMCs in which whole transcriptome, 192 surface proteins, and T and B cell receptor sequence were co-analyzed within the context of clinical measures from 50 COVID19 patient samples. Our study reveals novel cellular subpopulations, such as proliferative exhausted CD8 + and CD4 + T cells, and cytotoxic CD4 + T cells, that may be features of severe COVID-19 infection. We condensed over 1 million immune features into a single immune response axis that independently aligns with many clinical features and is also strongly associated with disease severity. Our study represents an important resource towards understanding the heterogeneous immune responses of COVID-19 patients and may provide key information for informing therapeutic development.
RESUMO
In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and ß-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.
Assuntos
Algoritmos , Proliferação de Células , Modelos Biológicos , Neoplasias/patologia , Animais , Caderinas/metabolismo , Simulação por Computador , Humanos , Método de Monte Carlo , Invasividade Neoplásica , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , beta Catenina/metabolismoRESUMO
Several studies on radiofrequency (RF) ablation are aimed at accurately predicting tissue temperature distributions by numerical solution of the bioheat equation. This paper describes the development of a solution that can serve as a benchmark for subsequent numerical solutions. The solution was obtained using integral transforms and evaluated using a C program. Temperature profiles were generated at various times and for different convection coefficients. In addition, a numerical model was developed using the same assumptions made in obtaining the benchmark solution. Comparison of surface and axial temperature profiles shows that the two solutions match very closely, cross validating the numerical methods used in evaluating both solutions.