Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Soft Matter ; 19(10): 1941-1951, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808176

RESUMO

What measurable physical properties allow one to distinguish surfactant-stabilised from Pickering emulsions? Whereas surfactants influence oil/water interfaces by lowering the oil/water interfacial tension, particles are assumed to have little effect on the interfacial tension. Here we perform interfacial tension (IFT) measurements on three different systems: (1) soybean oil and water with ethyl cellulose nanoparticles (ECNPs), (2) silicone oil and water with the globular protein bovine serum albumin (BSA), and (3) sodium dodecyl sulfate (SDS) solutions and air. The first two systems contain particles, while the third system contains surfactant molecules. We observe a significant decrease in interfacial tension with increasing particle/molecule concentration in all three systems. We analyse the surface tension data using the Gibbs adsorption isotherm and the Langmuir equation of state for the surface, resulting in surprisingly high adsorption densities for the particle-based systems. These seem to behave very much like the surfactant system: the decrease in tension is due to the presence of many particles at the interface, each with an adsorption energy of a few kBT. Dynamic interfacial tension measurements show that the systems are in equilibrium, and that the characteristic time scale for adsorption is much longer for particle-based systems than for surfactants, in line with their size difference. In addition, the particle-based emulsion is shown to be less stable against coalescence than the surfactant-stabilised emulsion. This leaves us with the conclusion that we are not able to make a clear distinction between the surfactant-stabilised and Pickering emulsions.

2.
Bioconjug Chem ; 29(7): 2248-2256, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29906097

RESUMO

Biocompatible thermoresponsive copolymers based on 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and oligo (ethylene glycol) methacrylate (OEGMA) were grown from the surface of ZnO quantum dots (QDs) by surface initiated atom transfer radical polymerization with activators regenerated by electron transfer (SI-ARGET ATRP) in order to design smart and fluorescent core/shell nanosystems to be used toward cancer cells. Tunable lower critical solution temperature (LCST) values were obtained and studied in water and in culture medium. The complete efficiency of the process was demonstrated by the combination of spectroscopic and microscopic studies. The colloidal behavior of the ZnO/copolymer core/shell QDs in water and in physiological media with temperature was assessed. Finally, the cytotoxicity toward human colon cancer HT29 cells of the core/shell QDs was tested. The results showed that the polymer-capped QDs exhibited almost no toxicity at concentrations up to 12.5 µg.mL-1, while when loaded with doxorubicin hydrochloride (DOX), a higher cytotoxicity and a decreased HT29 cancer cell viability in a short time were observed.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Pontos Quânticos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Coloides , Doxorrubicina/farmacologia , Células HT29 , Humanos , Metacrilatos/química , Polimerização , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Óxido de Zinco
3.
Nanotechnology ; 28(12): 125601, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28145892

RESUMO

Core/shell nanostructures based on silica, fluorescent ZnO quantum dots (QDs) and superparamagnetic Fe3O4 nanoparticles (NPs) were prepared and fully characterized by the combination of different techniques and the physical properties of the nanostructures were studied. We demonstrate the efficiency of the atom transfer radical polymerization with activators regenerated by electron transfer process to graft (co-)polymers of different structures and polarity at the surface of metal oxide NPs. The influence of the polymer chain configuration on the optical properties of the ZnO/polymer core/shell QDs was enlightened. Concerning the magnetic properties of the Fe3O4/polymer nanostructures, only the amount of the grafted polymer plays a role on the saturation magnetization of the NPs and no influence of the aggregation was evidenced. The simple and fast process described in this work is efficient for the grafting of copolymers from surfaces and the derived NPs display the combination of the physical properties of the core and the macromolecular behavior of the shell.

4.
Langmuir ; 31(5): 1842-9, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25598433

RESUMO

Meso-macroporous silica containing iron oxide nanoparticles (15-20 nm) was synthesized by formulating solid lipid nanoparticles and metallosurfactant as both template and metal source. Because of the high active surface area of the catalyst, the material exhibits an excellent performance in a Fenton-like reaction for methylene blue (MB) degradation, even at low amount of iron oxide (5% TOC after 14 h).

5.
Nanotechnology ; 26(33): 335605, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26222921

RESUMO

In this work, we developed a new process to covalently graft a thermoresponsive polymer on the surface of fluorescent nanocrystals in order to synthesize materials that combine both responsive and fluorescent properties. For the first time, poly(N-isopropylacrylamide) (PNIPAM) was grown by activator regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) from ZnO quantum dots (QDs) by surface-initiated polymerization. This process allowed the formation of fluorescent and responsive ZnO/PNIPAM core/shell QDs while only requiring the use of a ppm amount of copper for the synthesis. The influence of the nature of the silanized layer and the polymerization time on the properties of the final nanomaterials were investigated. Results clearly evidence that both the PNIPAM layer thickness and the temperature affected the luminescence properties of the core/shell nanoparticles, but also that the PNIPAM layer, when it is thick enough, could stabilize the QDs' optical properties.

6.
Heliyon ; 10(1): e23839, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226281

RESUMO

Amino-functionalized metal organic frameworks (MOFs) have attracted much attention for various applications such as carbon dioxide capture, water remediation and catalysis. The focus of this study is to determine the surface and Lewis's acid-base properties of UiO-66(NH2) crystals by the inverse gas chromatography (IGC) technique at infinite dilution. The latter was applied to evaluate the dispersive component of the surface energy γsd(T) by using thermal model and several molecular models. The obtained results proved that γsd(T) decreases when the temperature increases. The best results were achieved by using the thermal model that takes into account the effect of the temperature on the surface areas of the organic molecules. We also observed a decrease of the Gibbs surface free energy of adsorption by increasing the temperature of the different organic solvents. The polar interactions of UiO-66(NH2) were obtained by using the methods of Saint-Flour Papirer, Donnet et al., Brendlé-Papirer and the different molecular models. The Lewis's acid base constants KA and KD were further calculated by determining the different variables of adsorption of the probes on the solid surface and the obtained values were 1.07 and 0.45 for KA and KD respectively, with an acid-base ratio (KA/KD) of 2.38. These values showed the high acidic surface of the solid substrate; whereas, the values of the entropic acid base parameters, ωA, ωD and ωA/ωD respectively equal to 1.0×10-3, 3.8×10-4 and 2.73, also highlighted the important acidity of UiO-66-(NH2) surface. These important findings suggest that the surface defects (missing linkers and/or clusters) in UiO-66(NH2) are the main determining factor of the acid-base properties of UiO-66 based structures.

7.
Nanomaterials (Basel) ; 13(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770332

RESUMO

This paper addresses the impact of the particle initial wetting and the viscosity of the oil phase on the structure and rheological properties of direct (Oil/Water) and reverse (Water/Oil) Pickering emulsions. The emulsion structure was investigated via confocal microscopy and static light scattering. The flow and viscoelastic properties were probed by a stress-controlled rheometer. Partially hydrophobic silica particles have been employed at 1 and 4 wt.% to stabilize dodecane or paraffin-based emulsions at 20 vol.% of the dispersed phase. W/O emulsions were obtained when the particles were dispersed in the oily phase while O/W emulsions were prepared when the silica was introduced in the aqueous phase. We demonstrated that, although the particles adsorbed at the droplets interfaces for all the emulsions, their organization, the emulsion structure and their rheological properties depend in which phase they were previously dispersed in. We discuss these features as a function of the particle concentration and the oil viscosity.

8.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903803

RESUMO

Polymer flooding is one of the enhanced oil recovery (EOR) methods that increase the macroscopic efficiency of the flooding process and enhanced crude oil recovery. In this study, the effect of silica nanoparticles (NP-SiO2) in xanthan gum (XG) solutions was investigated through the analysis of efficiency in core flooding tests. First, the viscosity profiles of two polymer solutions, XG biopolymer and synthetic hydrolyzed polyacrylamide (HPAM) polymer, were characterized individually through rheological measurements, with and without salt (NaCl). Both polymer solutions were found suitable for oil recovery at limited temperatures and salinities. Then, nanofluids composed of XG and dispersed NP-SiO2 were studied through rheological tests. The addition of nanoparticles was shown to produce a slight effect on the viscosity of the fluids, which was more remarkable over time. Interfacial tension tests were measured in water-mineral oil systems, without finding an effect on the interfacial properties with the addition of polymer or nanoparticles in the aqueous phase. Finally, three core flooding experiments were conducted using sandstone core plugs and mineral oil. The polymers solutions (XG and HPAM) with 3% NaCl recovered 6.6% and 7.5% of the residual oil from the core, respectively. In contrast, the nanofluid formulation recovered about 13% of the residual oil, which was almost double that of the original XG solution. The nanofluid was therefore more effective at boosting oil recovery in the sandstone core.

9.
J Colloid Interface Sci ; 622: 126-134, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490616

RESUMO

HYPOTHESIS: The measurement of interfacial viscoelastic moduli provides information on the ability of surface-active agents to texture the interface. However, the contribution of the bulk rheology cannot be ignored in particular when the continuous phase exhibits a gel-like behavior, even with low modulus. EXPERIMENTS: Between 2 and 6 g/L, κ-carrageenan aqueous solutions have no significant activities at interfaces. At low concentrations or high temperatures, they behave like Newtonian liquids. Upon heating or cooling, a reversible liquid/gel transition appears with a hysteresis where the rheological behavior can be easily modulated by adjusting κ-carrageenan concentration. The frequency dependence of bulk and interfacial viscoelastic moduli are determined using a conventional shear rheometer and a drop tensiometer with a polyisobutene oil, respectively. FINDINGS: The effect of concentration and temperature is analyzed and the frequency dependence of interfacial moduli is correlated with those of the bulk. In presence of a gelled κ-carrageenan solutions, an elastic behavior of the interface appears and strengthens as the elastic modulus of the suspended phase is high. It turns out that the oscillating pendant drop method could be a sensitive indicator of the presence of very weak gels, even hardly detected by a shear classical rheometry.


Assuntos
Água , Carragenina , Géis , Reologia , Viscosidade
10.
J Chromatogr A ; 1666: 462849, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35108630

RESUMO

In this study, the surface thermodynamic properties and more particularly, the dispersive component γsd of the surface energy of crystals of a Zr-based MOF, UiO-66 (Zr6O4(OH)4(BDC)6; BDC = benzene 1,4-dicarboxylic acid), the specific interactions, and their acid-base constants were determined by using different molecular models and inverse gas chromatography methods. The determination of γsd of the UiO-66 surface was obtained by using several models such as Dorris-Gray and those based on the Fowkes relation by applying the various molecular models giving the surface areas of n-alkanes and polar organic molecules. Six models were used: Kiselev, spherical, geometric, Van der Waals, Redlich-Kwong, and cylindrical models. The obtained results were corrected by using our model taking into account the thermal effect on the surface areas of molecules. A linear equation was obtained between γsd and the temperature. The specific free energy, enthalpy and entropy of adsorption of polar molecules, as well as the acid and base constants of UiO-66 particles were determined with an excellent precision. It was also proved that the UiO-66 surface exhibited an amphoteric acid-base character with stronger acidity. The linear variations of the specific free energy of interaction as a function of the temperature allowed to obtain the specific surface enthalpy and entropy of adsorption, as well as the acid and base constants of UiO-66 by using ten different models and methods. The best results were obtained by using our model that gave the more precise values of the acid constant KA=0.57, the base constant KD=0.18 of the MOF particles and the ratio KA/KD = 3.14 clearly proving a strong acid character of the UiO-66 surface.


Assuntos
Ácidos de Lewis , Estruturas Metalorgânicas , Cromatografia Gasosa/métodos , Bases de Lewis , Ácidos Ftálicos , Propriedades de Superfície , Termodinâmica
11.
Nanomaterials (Basel) ; 12(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35683761

RESUMO

The effect of silica nanoparticles (NP-SiO2) in xanthan gum (XG) solutions was investigated through the analysis of viscosity profiles. First, hydrocolloid XG solutions and hydrophilic NP-SiO2 suspensions were characterized individually through rheological measurements, with and without salt (NaCl). Then, nanofluids composed of XG and NP-SiO2 dispersed in water and brine were studied through two different aging tests. The addition of nanoparticles was shown to produce a slight effect on the viscosity of the fresh fluids (initial time), while a more remarkable effect was observed over time. In particular, it appears that the presence of NP-SiO2 stabilizes the polymer solution by maintaining its viscosity level in time, due to a delay in the movement of the molecule. Finally, characterization techniques such as confocal microscopy, capillary rheometry, and Zeta potential were implemented to analyze the XG/NP-SiO2 interaction. Intrinsic viscosity and relative viscosity were calculated to understand the molecular interactions. The presence of NP-SiO2 increases the hydrodynamic radius of the polymer, indicating attractive forces between these two components. Furthermore, dispersion of the nanoparticles in the polymeric solutions leads to aggregates of an average size smaller than 300 nm with a good colloidal stability due to the electrostatic attraction between XG and NP-SIO2. This study proves the existence of interactions between XG and NP-SiO2 in solution.

12.
J Colloid Interface Sci ; 589: 286-297, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33472148

RESUMO

HYPOTHESIS: The distribution of particles in Pickering emulsions can be estimated through a percolation-type approach coupled to the evolution of their rheological features with the dispersed phase volume fraction ϕ. EXPERIMENTS: The rheological behavior of water-in-dodecane Pickering emulsions stabilized with hydrophobic silica nanoparticles is addressed. The emulsions viscosity and elastic modulus are investigated at ϕ varying from 0.1 to 0.75. Various rheological models are adjusted to the experimental data. FINDINGS: The comparison of the elastic modulus evolution of the Pickering emulsions with those of emulsions stabilized with surfactants confirms a major contribution of the particles to the rheological behavior of Pickering emulsions and supports the existence of a three-dimensional network between the droplets. The applied percolation approach allows to quantitively estimate a nanoparticles viscoelastic link between the droplets and opposes the classic vision of interfacial monolayers stabilizing the Pickering emulsions. This network of interconnected particles and droplets contributes significantly to the viscosity as well as the elastic modulus of these emulsions. To our knowledge, the applied percolation-based model is the only one capable of providing a structural explanation while describing the abrupt viscosity and elastic modulus growth of Pickering emulsions across the range of ϕ.

13.
Environ Technol ; 42(3): 419-428, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31180807

RESUMO

This paper addresses the residual toxicity of waters after photocatalysis treatments. The initial waters contain 7 mg L-1 of sulfaquinoxaline (SQX) which is a sulfonamide antibiotic generally recorded inside the water. The contaminated waters are treated by photocatalytic degradation process with bare titania and titania covered with polyaniline (PANI) conducting polymer. The degradation of SQX is conducted at different pH in order to find the optimal condition to obtain SQX concentration relatively equal to zero in the shortest amount of time. This occurs for PANI/TiO2 at pH 12 and TiO2 at pH 4. Toxicity assays (concentration of biomass, pigmentation tests, and cells counting) are undertaken on the microalgae Chlorella vulgaris in order to evaluate the residual toxicity of the 2 treated waters. The toxicity results highlight that the water treated by PANI/TiO2 at pH 12 is the less toxic towards the algae cells. The water processed by bare titania at acidic pH displays unneglectable toxicity towards the algae cells which are larger than the toxicity of the original SQX solution.


Assuntos
Chlorella vulgaris , Poluentes Químicos da Água , Compostos de Anilina , Catálise , Sulfaquinoxalina , Titânio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Sci Rep ; 10(1): 20894, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262429

RESUMO

The thermodynamic surface properties and Lewis acid-base constants of H-ß-zeolite supported rhodium catalysts were determined by using the inverse gas chromatography technique at infinite dilution. The effect of the temperature and the rhodium percentage supported by zeolite on the acid base properties in Lewis terms of the various catalysts were studied. The dispersive component of the surface energy of Rh/H-ß-zeolite was calculated by using both the Dorris and Gray method and the straight-line method. We highlighted the role of the surface areas of n-alkanes on the determination of the surface energy of catalysts. To this aim various molecular models of n-alkanes were tested, namely Kiselev, cylindrical, Van der Waals, Redlich-Kwong, geometric and spherical models. An important deviation in the values of the dispersive component of the surface energy [Formula: see text] determined by the classical and new methods was emphasized. A non-linear dependency of [Formula: see text] with the specific surface area of catalysts was highlighted showing a local maximum at 1%Rh. The study of RTlnVn and the specific free energy ∆Gsp(T) of n-alkanes and polar solvents adsorbed on the various catalysts revealed the important change in the acid properties of catalysts with both the temperature and the rhodium percentage. The results proved strong amphoteric behavior of all catalysts of the rhodium supported by H-ß-zeolite that actively react with the amphoteric solvents (methanol, acetone, tri-CE and tetra-CE), acid (chloroform) and base (ether) molecules. It was shown that the Guttmann method generally used to determine the acid base constants KA and KD revealed some irregularities with a linear regression coefficient not very satisfactory. The accurate determination of the acid-base constants KA, KD and K of the various catalysts was obtained by applying Hamieh's model (linear regression coefficients approaching r2 ≈ 1.000). It was proved that all acid base constants determined by this model strongly depends on the rhodium percentage and the specific surface area of the catalysts.

15.
Langmuir ; 25(21): 12771-9, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19785398

RESUMO

The advantage of using electrowetting as a novel principle for a reflective display has been previously demonstrated. The principle is based on the controlled two-dimensional movement of an oil/water interface across a hydrophobic fluoropolymer insulator. The main objective of this paper is to show experimentally the influence of surfactants on the electro-optic behavior of a single electrowetting pixel. The concentration and type of nonionic surfactant (Tween 80 and Span 20) have been varied. The experimental data are compared with calculations from the electro-optic model developed previously. The electro-optic performance is significantly affected by the nature and the concentration of surfactant. In the presence of Tween, at concentrations lower than the critical micelle concentration (CMC), and mixtures of Tween and Span the electro-optic behavior can be related to the interfacial tension. When decreasing the oil/water interfacial tension, the amplitude of the driving voltage required for obtaining a given oil displacement decreases and the switching curve becomes steeper. These effects can be accurately reproduced by means of the previously developed electro-optic model. Mixtures of Tween and Span produce a significant synergetic reduction of the driving voltage. For Tween concentrations higher than the CMC and Span, a strong disagreement is observed between the previously developed model and experimental data. Here a new physical model is reported that describes the electro-optic behavior of electrowetting-based optical elements in the presence of surfactants. The model takes into account the actual voltage used to control the liquid movement in electrowetting (lower than the applied voltage), the amount of surfactant adsorbed at the decane/water interface, and the dipole moment of the surfactant molecules. The calculated results are in very good agreement with experimental data without employing fitting parameters. The dipoles interact with the applied field and lower the actual applied field. This reduction of the effective electric field across the solid-liquid interface induces a decrease in the charge density at the solid-liquid interface and reduces the electrowetting force. For surfactant concentrations higher than the CMC, the electro-optic performance does not depend on the surfactant concentration. This demonstrates that the reduction of the electrowetting field due to the large dipole moment of the surfactant molecules occurs at the oil/water interface. A new method for the test cell fabrication is also presented.

16.
Environ Sci Pollut Res Int ; 25(35): 34950-34967, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29327191

RESUMO

In this paper, for the first time, faujasite Y zeolite impregnated with iron (III) was employed as a catalyst to remove a real cocktail of micropollutants inside real water samples from the Meurthe river by the means of the heterogeneous photo-Fenton process. The catalyst was prepared by the wet impregnation method using iron (III) nitrate nonahydrate as iron precursor. First, an optimization of the process parameters was conducted using phenol as model macro-pollutant. The hydrogen peroxide concentration, the light wavelength (UV and visible) and intensity, the iron loading immobilized, as well as the pH of the solution were investigated. Complete photo-Fenton degradation of the contaminant was achieved using faujasite containing 20 wt.% of iron, under UV light, and in the presence of 0.007 mol/L of H2O2 at pH 5.5. In a second step, the optimized process was used with real water samples from the Meurthe river. Twenty-one micropollutants (endocrine disruptors, pharmaceuticals, personal care products, and perfluorinated compounds) including 17 pharmaceutical compounds were specifically targeted, detected, and quantified. All the initial concentrations remained in the range of nanogram per liter (0.8-88 ng/L). The majority of the micropollutants had a large affinity for the surface of the iron-impregnated faujasite. Our results emphasized the very good efficiency of the photo-Fenton process with a cocktail of a minimum of 21 micropollutants. Except for sulfamethoxazole and PFOA, the concentrations of all the other microcontaminants (bisphenol A, carbamazepine, carbamazepine-10,11-epoxide, clarithromycin, diclofenac, estrone, ibuprofen, ketoprofen, lidocaine, naproxen, PFOS, triclosan, etc.) became lower than the limit of quantification of the LC-MS/MS after 30 min or 6 h of photo-Fenton treatment depending on their initial concentrations. The photo-Fenton degradation of PFOA can be neglected. The photo-Fenton degradation of sulfamethoxazole obeys first-order kinetics in the presence of the cocktail of the other micropollutants.


Assuntos
Recuperação e Remediação Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Zeolitas/química , Compostos Benzidrílicos/análise , Catálise , Disruptores Endócrinos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Oxirredução , Fenol , Fenóis/análise , Raios Ultravioleta , Poluentes Químicos da Água/química , Zeolitas/análise
17.
Photodiagnosis Photodyn Ther ; 22: 115-126, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29581041

RESUMO

In this study, light-sensitive photosensitizers (Chlorin e6, Ce6) were linked to TiO2 and SiO2 nanoparticles (NPs) in order to develop new kinds of NP-based drug delivery systems for cancer treatment by PDT. TiO2 or SiO2 NPs were modified either by the growth of a polysiloxane layer constituted of two silane reagents ((3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS)) around the core (PEGylated NPs: TiO2@4Si-Ce6-PEG, SiO2@4Si-Ce6-PEG) or simply modified by APTES alone (APTES-modified NPs: TiO2-APTES-Ce6, SiO2-APTES-Ce6). Ce6 was covalently attached onto the modified TiO2 and SiO2 NPs via an amide bond. The absorption profile of the hybridized NPs was extended to the visible region of the light. The physicochemical properties of these NPs were explored by TEM, HR-TEM, XRD, FTIR and zeta potential. The photophysical characteristics including the light absorption, the fluorescence properties and the production reactive oxygen species (1O2 and HO) were also addressed. In vitro experiments on glioblastoma U87 cells were performed to evaluate the photodynamic efficiency of the new hybridized NPs. The cells were exposed to different concentrations of NPs and illuminated (λexc = 652 nm, fluence rate 10 J/cm2). In contrast to the PEGylated NPs, the APTES-modified nanosystems were found to be more efficient for PDT. An interesting photodynamic effect was observed in the case of TiO2-APTES-Ce6 NPs. After illumination, the viability of U87 was decreased by 89% when they were exposed to 200 µg/mL of TiO2-APTES-Ce6 NPs, which corresponds to 0.22 µM of Ce6. The same effect can be obtained with free photosensitizer but using a higher concentration of 10 µM of Ce6.


Assuntos
Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Dióxido de Silício/química , Titânio/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Humanos , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/administração & dosagem , Polietilenoglicóis/química , Porfirinas/administração & dosagem , Propilaminas/química , Espécies Reativas de Oxigênio , Silanos/química
18.
Cancer Nanotechnol ; 8(1): 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104699

RESUMO

Nanoparticles (NPs) have been shown to have good ability to improve the targeting and delivery of therapeutics. In the field of photodynamic therapy (PDT), this targeting advantage of NPs could help ensure drug delivery at specific sites. Among the commonly reported NPs for PDT applications, NPs from zinc oxide, titanium dioxide, and fullerene are commonly reported. In addition, graphene has also been reported to be used as NPs albeit being relatively new to this field. In this context, the present review is organized by these different NPs and contains numerous research works related to PDT applications. The effectiveness of these NPs for PDT is discussed in detail by collecting all essential information described in the literature. The information thus assembled could be useful in designing new NPs specific for PDT and/or PTT applications in the future.

19.
Int J Pharm ; 532(2): 738-747, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28893585

RESUMO

The unique physical properties of the superparamagnetic nanoparticles (SPIONs) have made them candidates of choice in nanomedicine especially for diagnostic imaging, therapeutic applications and drug delivery based systems. In this study, superparamagnetic Fe3O4 NPs were synthesized and functionalized with a biocompatible thermoresponsive copolymer to obtain temperature responsive core/shell NPs. The ultimate goal of this work is to build a drug delivery system able to release anticancer drugs in the physiological temperatures range. The core/shell NPs were first synthesized and their chemical, physical, magnetic and thermo-responsive properties where fully characterized in a second step. The lower critical solution temperature (LCST) of the core/shell NPs was tuned in physiological media in order to release the cancer drug at a controlled temperature slightly above the body temperature to avoid any premature release of the drug. The core/shell NPs exhibiting the targeted LCST were then loaded with Doxurubicin (DOX) and the drug release properties were then studied with the temperature. Moreover the cytotoxicity tests have shown that the core/shell NPs had a very limited cytotoxicity up to concentration of 25µg/mL. This investigation showed that the significant release occurred at the targeted temperature in the physiological media making those nano-systems very promising for further use in drug delivery platform.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/administração & dosagem , Polietilenoglicóis/administração & dosagem , Ácidos Polimetacrílicos/administração & dosagem , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Células HT29 , Humanos , Nanopartículas de Magnetita/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Temperatura
20.
Biomaterials ; 32(23): 5459-70, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21549423

RESUMO

Quantum dots (QDs) nanoprobes are emerging as alternatives to small-molecule fluorescent probes in biomedical technology. This paper reports an efficient and rapid method of producing highly dispersed and stable CdSe-core QDs with a hydrophobic gradient. Amphiphilic core/shell CdSe/ZnS QDs were prepared by ligand exchange at the surface of lipophilic CdSe/ZnS QDs using the dihydrolipoic acid (DHLA) dithiol ligand linked to leucine or phenylalanine amino acids. Contact angle relaxations on a hydrophobic surface and surface tension measurements indicated that aqueous dispersions of CdSe/ZnS@DHLA-Leu or CdSe/ZnS@DHLA-Phe QDs exhibit increased hydrophobicity compared to CdSe-core QDs capped by the hydrophilic 3-mercaptopropionic acid (MPA) ligand. We found that the surface functional groups and the ligand density at the periphery of these QDs significantly dictated their interactions with a complex biological matrix called biofilm. Using fluorescence confocal microscopy and an autocorrelation function (semi-variogram), we demonstrated that MPA-capped QDs were homogeneously associated to the biopolymers, while amphiphilic CdSe/ZnS@DHLA-Leu or CdSe/ZnS@DHLA-Phe QDs were specifically confined allowing identification of hydrophobic microdomains of the biofilms. Results obtained clearly point out that the final destination of QDs in biofilms can properly be controlled by an appropriate design of surface ligands.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Pontos Quânticos , Coloração e Rotulagem/métodos , Ácido 3-Mercaptopropiônico/química , Compostos de Cádmio/química , Difusão , Leucina/química , Luz , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Fenilalanina/química , Espectroscopia Fotoeletrônica , Politetrafluoretileno/química , Espalhamento de Radiação , Compostos de Selênio/química , Shewanella/fisiologia , Espectrometria de Fluorescência , Eletricidade Estática , Sulfetos/química , Tensão Superficial , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA