Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Clin Genet ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988293

RESUMO

ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.

2.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279279

RESUMO

The human STAG2 protein is an essential component of the cohesin complex involved in cellular processes of gene expression, DNA repair, and genomic integrity. Somatic mutations in the STAG2 sequence have been associated with various types of cancer, while congenital variants have been linked to developmental disorders such as Mullegama-Klein-Martinez syndrome, X-linked holoprosencephaly-13, and Cornelia de Lange syndrome. In the cohesin complex, the direct interaction of STAG2 with DNA and with NIPBL, RAD21, and CTCF proteins has been described. The function of STAG2 within the complex is still unknown, but it is related to its DNA binding capacity and is modulated by its binding to the other three proteins. Every missense variant described for STAG2 is located in regions involved in one of these interactions. In the present work, we model the structure of 12 missense variants described for STAG2, as well as two other variants of NIPBl and two of RAD21 located at STAG2 interaction zone, and then analyze their behavior through molecular dynamic simulations, comparing them with the same simulation of the wild-type protein. This will allow the effects of variants to be rationalized at the atomic level and provide clues as to how STAG2 functions in the cohesin complex.


Assuntos
Coesinas , Deficiências do Desenvolvimento , Humanos , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Coesinas/genética , Síndrome de Cornélia de Lange/genética , DNA , Mutação , Mutação de Sentido Incorreto , Deficiências do Desenvolvimento/genética
3.
Clin Genet ; 102(2): 98-109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616059

RESUMO

Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.


Assuntos
Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Fatores de Transcrição , Humanos , Deficiência Intelectual/diagnóstico , Transtornos dos Movimentos/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/complicações , Convulsões/genética , Fatores de Transcrição/genética
4.
Int J Biol Macromol ; : 133822, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002918

RESUMO

DNA loop extrusion plays a key role in the regulation of gene expression and the structural arrangement of chromatin. Most existing mechanistic models of loop extrusion depend on some type of ratchet mechanism, which should permit the elongation of loops while preventing their collapse, by enabling DNA to move in only one direction. STAG2 is already known to exert a role as DNA anchor, but the available structural data suggest a possible role in unidirectional DNA motion. In this work, a computational simulation framework was constructed to evaluate whether STAG2 could enforce such unidirectional displacement of a DNA double helix. The results reveal that STAG2 V-shape allows DNA sliding in one direction, but blocks opposite DNA movement via a linear ratchet mechanism. Furthermore, these results suggest that RAD21 binding to STAG2 controls its flexibility by narrowing the opening of its V-shape, which otherwise remains widely open in absence of RAD21. Therefore, in the proposed model, in addition to its already described role as a DNA anchor, the STAG2-RAD21 complex would be part of a ratchet mechanism capable of exerting directional selectivity on DNA sliding during loop extrusion. The identification of the molecular basis of the ratchet mechanism of loop extrusion is a critical step in unraveling new insights into a broad spectrum of chromatin activities and their implications for the mechanisms of chromatin-related diseases.

5.
J Mol Med (Berl) ; 102(6): 801-817, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38554151

RESUMO

Rare recessive variants in the human VRK1 gene are associated with several motor neuron diseases (MND), such as amyotrophic lateral sclerosis, spinal muscular atrophy, or distal hereditary motor neuropathies (dHMN). A case with dHMN carrying two novel VRK1 gene variants, expressing Leu200Pro (L200P) and Arg387His (R387H) variant proteins, identified that these protein variants are functionally different. The Leu200Pro variant shares with several variants in the catalytic domain the loss of the kinase activity on different substrates, such as histones, p53, or coilin. However, the distal Arg387His variant and the distal Trp375* (W375X) chinese variant, both located at the end of the low complexity C-terminal region and proximal to the termination codon, retain their catalytic activity on some substrates, and mechanistically their functional impairment is different. The L200P variant, as well as most VRK1 pathogenic variants, impairs the phosphorylation of BAF and histone H4K16 acetylation, which are required for DNA attachment to the nuclear envelope and chromatin accessibility to DNA repair mechanisms, respectively. The R387H variant impairs phosphorylation of H2AX, an early step in different types of DNA damage responses. The functional variability of VRK1 protein variants and their different combinations are a likely contributor to the clinical phenotypic heterogeneity of motor neuron and neurological diseases associated with rare VRK1 pathogenic variants. KEY MESSAGES: VRK1 variants implicated in motor neuron diseases are functionally different. The L200P variant is kinase inactive, and the R387H variant is partially active. VRK1 variants alter H4K16 acetylation and loss of coilin and BAF phosphorylation. VRK1 variants alter Cajal bodies and DNA damage responses. VRK1 variant combination determines the neurological phenotype heterogeneity.


Assuntos
Histonas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Humanos , Acetilação , Histonas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Feminino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
6.
Cell Cycle ; 22(20): 2346-2359, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38037340

RESUMO

SHADSGasdermins (GSDMs) have garnered significant scientific interest due to their protective and detrimental roles in innate immunity, host defense, inflammation, and cancer alongside with other pathologies. While GSDMs are mostly recognized as key effectors of a lytic type of pro-inflammatory cell death known as pyroptosis, they do also take part in other cell death processes (NETosis, secondary necrosis, or apoptosis) and exhibit cell-death independent functions depending on the cellular context. Among GSDMs, Gasdermin B (GSDMB) pyroptotic capacity has been a subject of conflicting findings in scientific literature even when its processing, and subsequent activation, by Granzyme A (GZMA) was decoded. Nevertheless, recent groundbreaking publications have shed light on the crucial role of alternative splicing in determining the pyroptotic capacity of GSDMB isoforms, which depends on the presence of exon 6-derived elements. This comprehensive review pays attention to the relevant structural differences among recently crystalized GSDMB isoforms. As a novelty, the structural aspects governing GSDMB isoform susceptibility to GZMA-mediated activation have been investigated. By elucidating the complex roles of GSDMB isoforms, this review aims to deepen the understanding of this multifunctional player and its potential implications in disease pathogenesis and therapeutic interventions. [Figure: see text].


Assuntos
Apoptose , Piroptose , Processamento Alternativo/genética , Morte Celular , Isoformas de Proteínas/genética , Humanos
7.
Cell Death Differ ; 30(5): 1366-1381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36899106

RESUMO

Gasdermin (GSDM)-mediated pyroptosis is functionally involved in multiple diseases, but Gasdermin-B (GSDMB) exhibit cell death-dependent and independent activities in several pathologies including cancer. When the GSDMB pore-forming N-terminal domain is released by Granzyme-A cleavage, it provokes cancer cell death, but uncleaved GSDMB promotes multiple pro-tumoral effects (invasion, metastasis, and drug resistance). To uncover the mechanisms of GSDMB pyroptosis, here we determined the GSDMB regions essential for cell death and described for the first time a differential role of the four translated GSDMB isoforms (GSDMB1-4, that differ in the alternative usage of exons 6-7) in this process. Accordingly, we here prove that exon 6 translation is essential for GSDMB mediated pyroptosis, and therefore, GSDMB isoforms lacking this exon (GSDMB1-2) cannot provoke cancer cell death. Consistently, in breast carcinomas the expression of GSDMB2, and not exon 6-containing variants (GSDMB3-4), associates with unfavourable clinical-pathological parameters. Mechanistically, we show that GSDMB N-terminal constructs containing exon-6 provoke cell membrane lysis and a concomitant mitochondrial damage. Moreover, we have identified specific residues within exon 6 and other regions of the N-terminal domain that are important for GSDMB-triggered cell death as well as for mitochondrial impairment. Additionally, we demonstrated that GSDMB cleavage by specific proteases (Granzyme-A, Neutrophil Elastase and caspases) have different effects on pyroptosis regulation. Thus, immunocyte-derived Granzyme-A can cleave all GSDMB isoforms, but in only those containing exon 6, this processing results in pyroptosis induction. By contrast, the cleavage of GSDMB isoforms by Neutrophil Elastase or caspases produces short N-terminal fragments with no cytotoxic activity, thus suggesting that these proteases act as inhibitory mechanisms of pyroptosis. Summarizing, our results have important implications for understanding the complex roles of GSDMB isoforms in cancer or other pathologies and for the future design of GSDMB-targeted therapies.


Assuntos
Neoplasias da Mama , Piroptose , Humanos , Feminino , Granzimas/genética , Granzimas/metabolismo , Peptídeo Hidrolases/metabolismo , Elastase de Leucócito/metabolismo , Gasderminas , Proteínas de Neoplasias/metabolismo , Caspases/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias da Mama/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo
8.
Genes (Basel) ; 13(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36011323

RESUMO

Cornelia de Lange syndrome (CdLS) is a multisystemic genetic disorder characterized by distinctive facial features, growth retardation, and intellectual disability, as well as various systemic conditions. It is caused by genetic variants in genes related to the cohesin complex. Single-nucleotide variations are the best-known genetic cause of CdLS; however, copy number variants (CNVs) clearly underlie a substantial proportion of cases of the syndrome. The NIPBL gene was thought to be the locus within which clinically relevant CNVs contributed to CdLS. However, in the last few years, pathogenic CNVs have been identified in other genes such as HDAC8, RAD21, and SMC1A. Here, we studied an affected girl presenting with a classic CdLS phenotype heterozygous for a de novo ~32 kbp intragenic duplication affecting exon 10 of HDAC8. Molecular analyses revealed an alteration in the physiological splicing that included a 96 bp insertion between exons 9 and 10 of the main transcript of HDAC8. The aberrant transcript was predicted to generate a truncated protein whose accessibility to the active center was restricted, showing reduced ease of substrate entry into the mutated enzyme. Lastly, we conclude that the duplication is responsible for the patient's phenotype, highlighting the contribution of CNVs as a molecular cause underlying CdLS.


Assuntos
Síndrome de Cornélia de Lange , Proteínas de Ciclo Celular/genética , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Éxons , Heterozigoto , Histona Desacetilases/genética , Humanos , Fenótipo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA