Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Sci Food Agric ; 103(15): 7888-7895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37483122

RESUMO

BACKGROUND: About 35-45% of the global population is affected by iodine deficiency. Iodine intake can be increased through the consumption of biofortified vegetables. Given the increasing interest in wild edible species of new leafy vegetables due to their high nutritional content, this study aimed to evaluate the suitability of Swiss chard (Beta vulgaris ssp. vulgaris var. cicla) and its wild ancestor sea beet (Beta vulgaris ssp. maritima) to be fortified with iodine. Plants were cultivated hydroponically in a nutrient solution enriched with four different concentrations of iodine (0, 0.5, 1.0, and 1.5 mg L-1 ), and the production and quality of baby leaves were determined. RESULTS: Sea beet accumulated more iodine than Swiss chard. In both subspecies, increasing the iodine concentration in the nutrient solution improved leaf quality as a result of greater antioxidant capacity - the ferric reducing ability of plasma (FRAP) index increased by 17% and 28%, at 0.5 and 1.5 mg L-1 iodine, respectively - the content of flavonoids (+31 and + 26%, at 1 and 1.5 mg L-1 of iodine, respectively), and the lower content of nitrate (-38% at 1.5 mg L-1 of iodine) and oxalate (-36% at 0.5 mg L-1 of iodine). In sea beet, however, iodine levels in the nutrient solution higher than 0.5 mg L-1 reduced crop yield significantly. CONCLUSIONS: Both subspecies were found to be suitable for producing iodine-enriched baby leaves. The optimal iodine levels in the nutrient solution were 1.0 in Swiss chard and 0.5 mg L-1 in sea beet, as crop yield was not affected at these concentrations and leaves contained enough iodine to satisfy an adequate daily intake with a serving of 100 g. © 2023 Society of Chemical Industry.


Assuntos
Beta vulgaris , Iodo , Beta vulgaris/química , Antioxidantes/análise , Iodo/análise , Biofortificação , Verduras/química , Folhas de Planta/química
2.
Neurol Sci ; 42(7): 2607-2610, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33774762

RESUMO

BACKGROUND: COVID-19 pandemic has boosted telemedicine in medical clinical practice. Experiences in the management of chronic neurological disorders are limited and scattered. The aim of the study was to evaluate feasibility and efficacy of virtual visit for chronic neurological disorders during COVID-19 pandemic. METHODS: All patients scheduled for a visit during the lockdown period were contacted. The patients fell into four categories: (1) long-term follow-up, the patient was re-scheduled; (2) visit was necessary, teleconsultation was accepted; (3) problem was solved by phone call; and (4) visit was necessary and teleconsultation was not feasible, then visit was maintained. Google Meet was used. During the virtual visit, neurological examination was performed, and demographic and clinical characteristics were recorded. RESULTS: At the end of May 2020, 184 virtual visits for 178 patients were performed for the following diseases: myasthenia gravis (47 patients), multiple sclerosis (79), epilepsy (12), headache (6), and parkinsonism (34). The patients were 70 males and 108 females with a mean age of 53.5 years (range 13-90). During virtual visit, we were able to obtain a satisfactory neurological examination. CONCLUSIONS: We demonstrated feasibility and effectiveness of virtual visit in the management of a large group of patients with common chronic neurological disorders.


Assuntos
COVID-19 , Epilepsia , Telemedicina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Controle de Doenças Transmissíveis , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Adulto Jovem
3.
J Sci Food Agric ; 99(12): 5601-5605, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31149731

RESUMO

BACKGROUND: Microgreens (i.e. tender immature greens) are a popular alternative to sprouts (i.e. germinating seeds) because of their higher content of vitamins, carotenoids and phenols, as well as their lower content of nitrates. Their nutritional value can be improved by biofortification, which increases micronutrient levels during plant growth. Because selenium (Se) plays a significant role in antioxidant defense, biofortification with Se is a good way of improving the nutritional quality of sprouts and microgreens. The present study investigated the production of Se-fortified microgreens from Se-enriched seeds of sweet basil (Ocimum basilicum L.). These microgreens could be used as new beneficial dietary supplements. RESULTS: Basil plants were grown in a nutrient solution, containing 0 (control), 4 or 8 mg Se L-1 as sodium selenate, to full maturity. Seeds accumulated a high amount of Se and were then used to produce microgreens. The germination index was higher in the seeds from Se-treated plants and the microgreens were enriched in Se. The antioxidant capacity of Se-fortified microgreens was higher compared to the control. CONCLUSION: The production of microgreens from Se-enriched seeds could comprise a good system for obtaining microgreens with a high nutritional value. Basil plants treated with Se could be used to produce both Se-fortified leaves and microgreens. © 2019 Society of Chemical Industry.


Assuntos
Ocimum basilicum/química , Selênio/análise , Antioxidantes/análise , Antioxidantes/metabolismo , Biofortificação , Fertilizantes/análise , Alimentos Fortificados/análise , Germinação , Valor Nutritivo , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/metabolismo , Fenóis/análise , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Selênio/metabolismo
4.
J Sci Food Agric ; 99(5): 2463-2472, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30367482

RESUMO

BACKGROUND: Selenium (Se) enrichment of plants seems effective in enhancing the health-related properties of produce and in delaying plant senescence and fruit ripening. The current study investigated the effects of Se on tomato fruit ripening. Tomato (Solanum lycopersicum L.) plants were grown in hydroponics with different Se-enriched nutrient solutions. Se, as sodium selenate, was added at a rate of 0 mg L-1 (control), 1, and 1.5 mg L-1 . RESULTS: Selenium was absorbed by roots and translocated to leaves and fruit. Enrichment with Se did not significantly affect the qualitative parameters of fruit at commercial harvest; instead it delayed ripening by affecting specific ripening-related processes (respiration, ethylene production, color evolution) during postharvest. In the current experiment 100 g of tomato hydroponically grown with a 1.5 mg Se L-1 enriched solution provided a total of 23.7 µg Se. Selenium recommended daily intake is 60 µg for women and 70 µg for men; thus the daily consumption of 100 g of enriched tomato would not lead to Se toxicity but would provide a good Se diet supplementation. CONCLUSIONS: The cultivation of tomato plants in a Se-enriched solution appeared effective in producing tomato fruit with improved performance during storage and postharvest shelf life, and also with greater potential health-promoting properties. © 2018 Society of Chemical Industry.


Assuntos
Frutas/crescimento & desenvolvimento , Selênio/metabolismo , Solanum lycopersicum/metabolismo , Frutas/química , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Environ Manage ; 203(Pt 1): 316-329, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803155

RESUMO

The removal of contaminants from an earthy matrix by phytoremediation requires the selection of appropriate plant species and a suitable strategy to be effective. In order to set up an assisted phytoremediation intervention related to a disused industrial site affected by an arsenic and lead complex contamination, an extensive experimental investigation on micro and mesocosm scale has been conducted. Particular attention was given to the choice of plant species: using crop plants (Lupinus albus, Helianthus annuus and Brassica juncea) a series of parallel test campaigns have been realized to investigate different scenarios for the reclamation. With regard to the arsenic contamination, which is certainly the most worrying, the possibility of employing a hyper-accumulator species (Pteris vittata) has also been investigated, highlighting advantages and difficulties associated with such an approach. The application of various mobilizing agents in different concentrations was tested, in order to maximize the extraction efficiency of plants in respect of both contaminants, showing the necessity of a chemically assisted approach to promote their uptake and translocation in the shoots. Phosphate addition appears to produce the desired results, positively affecting As phyto-extraction for both hyper-accumulator and crop plants, while minimizing its toxic effects at the investigated concentrations. With regard to Pb, although tests with EDDS have been encouraging, EDTA should be preferred at present due to lower uncertainties about its effectiveness. The performed tests also improved the addition of mobilizing agents, allowing the simultaneous removal of the two metals despite their great diversity (which in general discourages such approach), with significant saving of time and an obvious improvement of the overall process.


Assuntos
Arsênio , Biodegradação Ambiental , Chumbo , Solo , Poluentes do Solo
7.
Plants (Basel) ; 13(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38337911

RESUMO

Water and soil salinity continuously rises due to climate change and irrigation with reused waters. Guayule (Parthenium argentatum A. Gray) is a desert perennial shrub native to northern Mexico and the southwestern United States; it is known worldwide for rubber production and is suitable for cultivation in arid and semiarid regions, such as the Mediterranean. In the present study, we investigated the effects of high and increasing concentrations of sodium chloride (NaCl) on the growth and the morphophysiological and biochemical characteristics of guayule to evaluate its tolerance to salt stress and suitability in phytomanagement and, eventually, the phytodesalinisation of salt-affected areas. Guayule originates from desert areas, but has not been found in salt-affected soils; thus, here, we tested the potential tolerance to salinity of this species, identifying the toxicity threshold and its possible sodium (Na) accumulation capacity. In a hydroponic floating root system, guayule seedlings were subjected to salinity-tolerance tests using increasing NaCl concentrations (from 2.5 to 40 g L-1 and from 43 to 684 mM). The first impairments in leaf morphophysiological traits appeared after adding 15 g L-1 (257 mM) NaCl, but the plants survived up to the hypersaline conditions of 35-40 g L-1 NaCl (about 600 mM). The distribution of major cell cations modulated the high Na content in the leaves, stems and roots; Na bioconcentration and translocation factors were close to one and greater than one, respectively. This is the first study on the morphophysiological and (bio)chemical response of guayule to different high and increasing levels of NaCl, showing the parameters and indices useful for identifying its salt tolerance threshold, adaptative mechanisms and reclamation potential in high-saline environments.

8.
Sci Total Environ ; : 174446, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964415

RESUMO

Bioavailability of potentially toxic elements (PTEs) from the Earth's crust in the soil, e.g., As, Hg, Tl, and Pb, can pose a potential environmental and health risk because of human activities, especially related to mining extraction. The biomonitoring allows to detect PTE contamination through their measurement in living organisms as trees. However, the choice of which plant species and tissue to analyse is a key point to be evaluated in relation to PTE absorption and translocation. The aim of this work was to assess the As, Hg, Tl, and Pb distribution in Castanea sativa Mill. plant tissues, given its importance for both biomass and food production. The study identified two sites in the Alpi Apuane (Italy), with similar environmental conditions (e.g., elevation, exposure, forest type, and tree species) but different soil PTE levels. The topsoil was characterized, and the PTE fractions with different bioavailability were measured. The PTE concentrations were also analysed in chestnut plant tissues (leaves, bark, wood, nuts, and shells) in parallel with and evaluation of plant health status through the determination of micro and macronutrient concentrations and the leaf C and N isotope composition (δ13C or δ15N). Chestnut trees showed a good health status highlighting its suitability for Tl, As, Hg, and Pb biomonitoring, by a tissue-specific PTE allocation. Thallium and Hg were detected in all plant tissues at similar concentrations, As was found in leaves, wood, and nuts while Pb only in the bark. The δ15N negatively correlated with leaf Mn and Tl concentrations, suggesting possible changes in N source and/or plant metabolism due to the high contamination level and acid soil pH. The Tl in La Culla site trees was associated with its presence in the carbonate rocks but not in the topsoil, highlighting the potentiality of chestnut in providing valuable information for geochemical surveying.

9.
Plants (Basel) ; 12(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176795

RESUMO

Hypersaline environments occur naturally worldwide in arid and semiarid regions or in artificial areas where the discharge of highly saline wastewaters, such as produced water (PW) from oil and gas industrial setups, has concentrated salt (NaCl). Halophytes can tolerate high NaCl concentrations by adopting ion extrusion and inclusion mechanisms at cell, tissue, and organ levels; however, there is still much that is not clear in the response of these plants to salinity and completely unknown issues in hypersaline conditions. Mechanisms of tolerance to saline and hypersaline conditions of four different halophytes (Suaeda fruticosa (L.) Forssk, Halocnemum strobilaceum (Pall.) M. Bieb., Juncus maritimus Lam. and Phragmites australis (Cav.) Trin. ex Steudel) were assessed by analysing growth, chlorophyll fluorescence and photosynthetic pigment parameters, nutrients, and sodium (Na) uptake and distribution in different organs. Plants were exposed to high saline (257 mM or 15 g L-1 NaCl) and extremely high or hypersaline (514, 856, and 1712 mM or 30, 50, and 100 g L-1 NaCl) salt concentrations in a hydroponic floating culture system for 28 days. The two dicotyledonous S. fruticosa and H. strobilaceum resulted in greater tolerance to hypersaline concentrations than the two monocotyledonous species J. maritimus and P. australis. Plant biomass and major cation (K, Ca, and Mg) distributions among above- and below-ground organs evidenced the osmoprotectant roles of K in the leaves of S. fruticosa, and of Ca and Mg in the leaves and stem of H. strobilaceum. In J. maritimus and P. australis the rhizome modulated the reduced uptake and translocation of nutrients and Na to shoot with increasing salinity levels. S. fruticosa and H. strobilaceum absorbed and accumulated elevated Na amounts in the aerial parts at all the NaCl doses tested, with high bioaccumulation (from 0.5 to 8.3) and translocation (1.7-16.2) factors. In the two monocotyledons, Na increased in the root and rhizome with the increasing concentration of external NaCl, dramatically reducing the growth in J. maritimus at both 50 and 100 g L-1 NaCl and compromising the survival of P. australis at 30 g L-1 NaCl and over after two weeks of treatment.

10.
Acta Neurol Belg ; 123(3): 983-991, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36635442

RESUMO

BACKGROUND: Covid-19 pandemic has boosted telemedicine in medical clinical practice. Experience in the management of chronic neurological disorders is limited as well as patient opinion. During Covid-19 pandemic, we evaluated patients' satisfaction and opinion about televisits in a large group of patients with chronic neurological disorders. METHODS: All patients with chronic neurological disorders who had a virtual visit during the first phase of pandemic were invited to fill an online anonymous questionnaire about their global satisfaction and satisfaction regarding continuity of care, possibility to stay at home, doctor-patient relationship, the future of teleconsultation after pandemic and the possibility of understanding medical information and instructions. RESULTS: We received 123 questionnaires among 232 e-mail (response rate 53%). Almost all (120 out of 121 patients, 99%) were satisfied with the overall experience with video-consultation. Comprehension of medical information was the same for 113 out of 122 patients (93%) and also the doctor-patient relationship was the same for 107 out of 122 respondents (88%) or better for 10 (8%). Ninety-three percent of patients (112 out of 120) were keen to integrate televisits with the traditional modality and only 11 out of 121 patients (9%) judged televisits as an option to discard. As a whole, 114 out of 122 respondents (93%) would suggest this modality to other patients. CONCLUSIONS: Our large cohort of patients with chronic neurologic disorders rated experience with televisits satisfactory. Comprehension of medical information and doctor-patient interaction was considered good. Eventually, patients are keen to integrate this modality with traditional follow-up visits.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , Satisfação do Paciente , Pandemias , Relações Médico-Paciente , Doenças do Sistema Nervoso/terapia , Doença Crônica
11.
Environ Sci Pollut Res Int ; 29(11): 15983-15998, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34642886

RESUMO

Phytoremediation represents a natural method to remove contaminants from soil. The goal of this study was to investigate the potential of phosphate-assisted phytoremediation by two energy crops, Cannabis sativa L. and Brassica juncea L., for the sustainable remediation of heavily arsenic-contaminated industrial soil. The two species were investigated for uptake, translocation, and physiological effects of arsenic and phosphate in a microcosm test. Although C. sativa and B. juncea were symptomless when grown in arsenic-contaminated soil, an important reduction of biomass (50 and 25%, respectively) was observed as a stress marker. Phytotoxicity and cytotoxicity effects promoted by contaminated soils were investigated in both the species and a model plant for ecotoxicity studies, Vicia faba L., which is the most developed model to test genotoxicity effects in terms of chromosomal aberration and micronuclei presence. The higher amount of arsenic was found in C. sativa and B. juncea roots (on average 1473 and 778 mg kg-1, respectively), but both species were able to uptake and translocate arsenic in leaves and stems, up to 47.0 and 189 mg kg-1, respectively. Phosphate treatment had no effect on arsenic uptake in none of the crop, but significantly improved the plant performance. Biomass production resulted similar to that of B. juncea control plants. Antioxidant enzymatic activities and photosynthetic performance responded differently in the two crops. The present investigation provides new insight for a proficient selection of the most suitable crop species for sustainable phytomanagement of a highly polluted As-contaminated site by coupled phytoremediation-bioenergy approach.


Assuntos
Arsênio , Cannabis , Poluentes do Solo , Biodegradação Ambiental , Mostardeira , Solo , Poluentes do Solo/análise
12.
Plants (Basel) ; 10(6)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071129

RESUMO

Foliar spray with selenium salts can be used to fortify tomatoes, but the results vary in relation to the Se concentration and the plant developmental stage. The effects of foliar spraying with sodium selenate at concentrations of 0, 1, and 1.5 mg Se L-1 at flowering and fruit immature green stage on Se accumulation and quality traits of tomatoes at ripening were investigated. Selenium accumulated up to 0.95 µg 100 g FW-1, with no significant difference between the two concentrations used in fruit of the first truss. The treatment performed at the flowering stage resulted in a higher selenium concentration compared to the immature green treatment in the fruit of the second truss. Cu, Zn, K, and Ca content was slightly modified by Se application, with no decrease in fruit quality. When applied at the immature green stage, Se reduced the incidence of blossom-end rot. A group of volatile organic compounds (2-phenylethyl alcohol, guaiacol, (E)-2-heptenal, 1-penten-3-one and (E)-2-pentenal), positively correlated with consumer liking and flavor intensity, increased following Se treatment. These findings indicate that foliar spraying, particularly if performed at flowering stage, is an efficient method to enrich tomatoes with Se, also resulting in positive changes in fruit aroma profile.

13.
Environ Sci Pollut Res Int ; 28(34): 47294-47305, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33890221

RESUMO

Phytoextraction is currently investigated to effectively remediate soil contaminated by metals and provide highly competitive biomass for energy production. This research aimed to increase arsenic (As) removal from contaminated soil using industrial Cannabis sativa L., a suitable energy crop for biofuel production. Assisted phytoextraction experiments were conducted on a microcosm scale to explore the ability of two friendly treatments, sodium sulphate (SO4) and exogenous cytokinin (CK), in increasing As phytoextraction efficiency. The results showed that the treatments significantly increased As phytoextraction. Cytokinin was the most effective agent for effectively increasing translocation and the amount of As in aerial parts of C. sativa. In fact, the concentration of As in the shoots of CK-treated plants increased by 172% and 44% compared to untreated and SO4-treated plants, respectively. However, the increased As amount accumulated in C. sativa tissues due to the two treatments negatively affected plant growth. Arsenic toxicity caused a significant decrease in aerial C. sativa biomass treated with CK and SO4 of about 32.7% and 29.8% compared to untreated plants, respectively. However, for our research purposes, biomass reduction has been counterbalanced by an increase in As phytoextraction, such as to consider C. sativa and CK an effective combination for the remediation of As-contaminated soils. Considering that C. sativa has the suitable characteristics to provide valuable resources for bioenergy production, our work can help improve the implementation of a sustainable management model for As contaminated areas, such as phytoremediation coupled with bioenergy generation.


Assuntos
Arsênio , Cannabis , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Citocininas , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Sulfatos
14.
J Neuroimmunol ; 357: 577598, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099270

RESUMO

Epidemiologic data on neuronal surface antibody (NSAb)-associated autoimmune encephalitides (NSAE) are scarce and heterogeneous. We review our 13-year-long biobank-data collection and provide the incidence of NSAE in two Italian provinces (approx. Population of 1,400,000) over a 5-year period (July 2013-June 2018). NSAbs were diagnosed in 75 out of 1179 tested patients (6.4%). The most common NSAbs were anti-LGI1 (30 cases), followed by NMDAR (24). Eleven cases of NSAE were diagnosed in Treviso and Trento provinces with an estimated incidence of 1.54 per 1,000,000 population (LGI1-encephalitis 0.84; C.I. 0.38-1.88). LGI1-E is the most frequent NSAE among adults.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Encefalite Límbica/epidemiologia , Encefalite Límbica/imunologia , Neurônios/imunologia , Idoso , Feminino , Humanos , Incidência , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Plants (Basel) ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604830

RESUMO

The biofortification of leafy vegetables with selenium (Se) is a good way to increase human dietary Se intake. In addition, selenium delays plant senescence by enhancing the antioxidant capacity of plant tissues, decreasing postharvest losses. We investigated the effects of selenium addition on the production and quality of sweet basil (Ocimum basilicum) leaves of two harvesting phases, hereafter referred to as cuts, during the crop cycle. Plants were hydroponically grown and treated with 0 (control), 4, 8 and 12 mg Se L-1 as selenate. To evaluate the growth, nutritional value and quality of the basil leaves, selected qualitative parameters were determined at harvest and after five days of storage. Application of Se at varying rates (4, 8 and 12 mg L-1) was associated with an increased leaf selenium concentration in the first, but not the second cut. The application of Se significantly affected the antioxidant capacity as well as the total phenol and rosmarinic acid contents at harvest. The reduction in ethylene production observed in the plants at 4 mg Se L-1 after five days of storage suggests that this Se treatment could be used to prolong and enhance the shelf-life of basil. The daily consumption of 10 g of Se-enriched basil leaves, which, as an example, are contained in a single portion of Italian pesto sauce, would also satisfy the recommended selenium supplementation in humans.

16.
Sci Total Environ ; 655: 328-336, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30471601

RESUMO

Proper plant selection and application of suitable strategies are key factors to ensure the effectiveness of a reclamation via phytoremediation approach. In this study, micro- and meso-cosm scale experimentation has been realized to address a persistent contamination by arsenic on a disused industrial site through an assisted phytoremediation intervention. Three crop species, namely Brassica juncea, Helianthus annuus and Zea mays, have been considered and the addition of K2HPO4, a common mobilizing agent for As, or (NH4)S2O3, a promising additive for As mobilization in case of mercury co-presence, evaluated. The use of these additives significantly enhanced the bioavailability of the target contaminant and therefore its phytoextraction up to 80%. Furthermore, in order to maximize the extraction efficiency of the plants, the influence of five indigenous Plant Growth Promoting Bacteria (PGPB), in combination with the mobilizing agents, was measured. The addition of the microbial consortium led to a further increase in the total uptake of arsenic, especially in B. juncea (up to 140%). The combined strategy supports and enhances the arsenic phytoextraction together with an improvement of the soil quality, as shown by phytotoxicity tests.


Assuntos
Arseniatos/análise , Mostardeira/crescimento & desenvolvimento , Fosfatos/química , Compostos de Potássio/química , Microbiologia do Solo , Poluentes do Solo/análise , Tiossulfatos/química , Arseniatos/metabolismo , Biodegradação Ambiental , Consórcios Microbianos/fisiologia , Modelos Teóricos , Mostardeira/metabolismo , Mostardeira/microbiologia , Poluentes do Solo/metabolismo
17.
Sci Total Environ ; 644: 45-51, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980084

RESUMO

Urban cultivation for food production is of growing importance. The quality of urban soil can be improved by tillage and the incorporation of organic matter, or can be degraded by chemical treatments. Urban gardeners have a role in this process, through the selection of various cultivation techniques. Our study focuses on an allotment area in the town of Pisa (Italy), which since 1995 has been run as a municipal vegetable garden by the residents. We analysed the soil and compared the data with those collected five years previously, to verify the possible changes in soil properties and fertility. We also interviewed the gardeners regarding their backgrounds, motivations and cultivation practices. We looked for possible changes in the soil quality attributable to the cultivation techniques. We found that the allotment holders influenced the soil quality through the cultivation techniques. Organic carbon, electrical conductivity and the content of copper increased unevenly in relation to the gardeners' cultivation practices. At the same time the study highlights that the urban gardeners were not completely aware of how to protect and enhance the fertility and the quality of urban soil. We believe that town councils should be responsible for providing correct information to the allotment holders and thus prevent the possible misuse of urban soil to grow food, as this can affect everyone's health.


Assuntos
Conservação dos Recursos Naturais/métodos , Cultura , Jardinagem , Solo , Itália , Poluentes do Solo , Verduras
18.
Environ Sci Pollut Res Int ; 24(8): 7809-7820, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28130721

RESUMO

The release of large amounts of toxic metals in the neighboring sites of abandoned mine areas represents an important environmental risk for the ecosystem, because it adversely affects soil, water, and plant growth. The aim of the present study was to investigate the metal(loid) (As, Cr, Cu, Ni, Pb, and Zn) contents of native Mediterranean plants grown on the ex-mining area of Elba island (Italy), with the prospective of its recovery by further phytoremediation technology. Soil samples were collected and characterized for metal(loid) content in total and potentially available (EDTA-extractable) fractions. Arsenic was particularly high, being 338 and 2.1 mg kg-1 as total and available fractions, respectively. Predominant native species, namely Dittrichia viscosa L. Greuter, Cistus salviifolius L., Lavandula stoechas L., and Bituminaria bituminosa L., were analyzed for metal content in the different plant organs. D. viscosa exhibited the highest metal(loid) content in the leaves and the singular behavior of translocating arsenic to the leaves (transfer factor about 2.06 and mean bioconcentration factor about 12.48). To assess the healthy status of D. viscosa plants, the leaves were investigated further. The activities of the main antioxidant enzymes and the levels of secondary metabolites linked to oxidative stress in plants from the ex-mining area were not significantly different from those of control plants, except for a lower content of carotenoids, indicating that native plants were adapted to grow in these polluted soils. These results indicate that D. viscosa can be suitable for the revegetation of highly metal-contaminated areas.


Assuntos
Ilhas , Magnoliopsida/efeitos dos fármacos , Metais Pesados/toxicidade , Mineração , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Ecossistema , Itália , Magnoliopsida/metabolismo , Metais Pesados/isolamento & purificação , Metais Pesados/metabolismo , Solo/química , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA