Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Langmuir ; 34(21): 6085-6094, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29742353

RESUMO

Gas hydrates pose economic and environmental risks to the oil and gas industry when plug formation occurs in pipelines. A novel approach was applied to understand cyclopentane clathrate hydrate formation in the presence of nonionic surfactant to achieve hydrate inhibition at low percent weight compared to thermodynamic inhibitors. The hydrate-inhibiting performance of low (CMC) concentrations of Span 20, Span 80, Pluronic L31, and Tween 65 at 2 °C on a manually nucleated 2 µL droplet showed a morphological shift in crystallization from planar shell growth to conical growth. Monitoring the internal pressure of the water droplet undergoing hydrate crystallization provides information on the change in interfacial tension during the crystallization process. The results of this study will provide information on the surfactant effect on hydrate crystallization and inhibition. At low surfactant concentrations (below CMC), a planar hydrate crystal was formed. Decreasing interfacial tension was observed, which can be related to the shrinking area of the water-cyclopentane interface. At high surfactant concentration, the crystal morphology was shifted to conical. Interfacial tension measurements reveal oscillations of the interfacial tension during the crystallization process. The oscillations of the interfacial tension result from the fact that once the crystal has reached a critical size a portion of the cone breaks free from the droplet surface, which results in a sudden increase in the available surface for the surfactant molecules. Hence, a temporary increase in the interfacial tension can be observed. The oscillatory behavior of the interfacial tension is a result of the growth and release of the hydrate cones from the surface of the droplet. We have found that the most efficient surfactant in hydrate inhibition would be the one with HLB closest to 10 (equal hydrophilic-hydrophobic parts). In this way, the surfactant molecules will stay at the interface as they observe equal affinities for both the oil and water phases. Surfactant molecules that have the strongest affinity to the interface will be able to inhibit the growth of the crystal as they will force the cones to break and will not allow them to grow.

2.
Soft Matter ; 10(3): 421-30, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24651830

RESUMO

This paper describes the break-up of droplets in a concentrated emulsion during its flow as a 2D monolayer in a microchannel consisting of a narrow constriction. Analysis of the behavior of a large number of drops (N > 4000) shows that the number of break-ups increases with increasing flow rate, entrance angle to the constriction, and size of the drops relative to the width of the constriction. As single drops do not break at the highest flow rate used in the system, break-ups arise primarily from droplet-droplet interactions. Analysis of droplet properties at a high temporal resolution of 10 microseconds makes it possible to relate droplet deformation with droplet break-up probability. Similar to previous studies on single drops, no break-up is observed below a set of critical flow rates and droplet deformations. Unlike previous studies, however, not all drops undergo break-up above the critical values. Instead, the probability of droplet break-up increases with flow rate and the deformation of the drops. The probabilistic nature of the break-up process arises from the stochastic variations in the packing configuration of the drops as they enter the constriction. Local break-up dynamics involves two primary drops. A close look at the interactions between the pair of drops reveals that the competing time scales of droplet rearrangement relative to the relaxation of the opposing drop govern whether break-up occurs or not. Practically, these results can be used to calculate the maximum throughput of the serial interrogation process often employed in droplet microfluidics. For 40 pL-drops, the highest throughput with less than 1% droplet break-up was measured to be approximately 7000 drops per second. In addition, the results presented are useful for understanding the behavior of concentrated emulsions in applications such as mobility control in enhanced oil recovery, and for extrapolating critical parameters such as injection rates to ensure the stability of the fluids going through small pore throats.

3.
Nat Methods ; 7(8): 631-3, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20639867

RESUMO

We generated a system for in vivo visualization and analysis of mammalian mRNA transcriptional kinetics of single alleles in real time, using single-gene integrations. We obtained high-resolution transcription measurements of a single cyclin D1 allele under endogenous or viral promoter control, including quantification of temporal kinetics of transcriptional bursting, promoter firing, nascent mRNA numbers and transcription rates during the cell cycle, and in relation to DNA replication.


Assuntos
Alelos , Transcrição Gênica , Ciclina D1/genética , Replicação do DNA , Humanos , Cinética
4.
Langmuir ; 29(6): 1948-55, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23339286

RESUMO

3-Hydroxybutyric acid (also referred to as ß-hydroxybutyric acid or BHB), a small molecule metabolite whose concentration is elevated in type I diabetes and diabetic coma, was found to modulate the properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers when added to the subphase at clinical concentrations. This is a key piece of evidence supporting the hypothesis that the anesthetic actions of BHB are due to the metabolite's abilities to alter physical properties of cell membranes, leading to indirect effects on membrane protein function. Pressure-area isotherms show that BHB changes the compressibility of the monolayer and decrease the size of the two-phase coexistence region. Epi-fluorescent microscopy further reveals that the reduction of the coexistence region is due to the significant reduction in morphology of the liquid condensed domains in the two-phase coexistence region. These changes in monolayer morphology are associated with the diminished interfacial viscosity of the monolayers (measured using an interfacial stress rheometer), which gives insight as to how changes in phase and structure may contribute to membrane function.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Anestésicos/metabolismo , Anestésicos/farmacologia , Estado de Consciência/efeitos dos fármacos , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Relação Dose-Resposta a Droga
5.
Langmuir ; 28(40): 14238-44, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22989061

RESUMO

The phenomenon of dewetting is frequently observed in our everyday life. It is of central importance in many technological applications as well as in a variety of physical and biological systems. The presence of nonsoluble surfactants at an air/liquid interface may affect the dewetting properties of the aqueous layer. An important example is the tear film, which comprises an aqueous layer covered with a ∼100-nm-thick blanket of lipids, known as the meibomian lipids. Interfacial rheological measurements of meibomian lipids reveal that these films are remarkably viscoelastic. Tear film dewetting is of central importance to understanding tear film stability. To better understand the role of surface viscoelasticity in tear film stability, we have developed a methodology to systematically control interfacial rheology of thin aqueous layers at the onset of dewetting events. The apparatus allows control over the surface pressure of the monolayer, which is a key feature since this variable controls the surface viscoelasticity. Three insoluble monolayer materials were used: newtonian arachidyl alcohol (AA), DPPC, a phospholipid that is slightly viscoelastic, and meibum, which produces a strongly viscoelastic monolayer. It is reported that monolayers of viscoelastic surfactants are able to stabilize thin films against spontaneous dewetting. As the surface pressure of these layers is increased, their effectiveness is enhanced. Moreover, these surfactants are able to reduce the critical film thickness for dewetting. Meibum is particularly effective in stabilizing thin films. Our results suggest that the meibomian lipids play a vital role in maintaining tear film stability in addition to suppressing evaporation.


Assuntos
Elasticidade , Tensoativos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Álcoois/química , Animais , Bovinos , Reologia , Viscosidade , Água/química , Molhabilidade
6.
Langmuir ; 28(32): 11858-65, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22783994

RESUMO

Meibum is the primary component of the tear film lipid layer. Thought to play a role in tear film stabilization, understanding the physical properties of meibum and how they change with disease will be valuable in identifying dry eye treatment targets. Grazing incidence X-ray diffraction and X-ray reflectivity were applied to meibum films at an air-water interface to identify molecular organization. At room temperature, interfacial meibum films formed two coexisting scattering phases with rectangular lattices and next-nearest neighbor tilts, similar to the Ov phase previously identified in fatty acids. The intensity of the diffraction peaks increased with compression, although the lattice spacing and molecular tilt angle remained constant. Reflectivity measurements at surface pressures of 18 mN/m and above revealed multilayers with d-spacings of 50 Å, suggesting that vertical organization rather than lateral was predominantly affected by meibum-film compression.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/química , Glândulas Tarsais/química , Glândulas Tarsais/metabolismo , Feminino , Humanos , Difração de Raios X
7.
Biomicrofluidics ; 16(2): 024103, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35282036

RESUMO

The motion of cells orthogonal to the direction of main flow is of importance in natural and engineered systems. The lateral movement of red blood cells (RBCs) distal to sudden expansion is considered to influence the formation and progression of thrombosis in venous valves, aortic aneurysms, and blood-circulating devices and is also a determining parameter for cell separation applications in flow-focusing microfluidic devices. Although it is known that the unique geometry of venous valves alters the blood flow patterns and cell distribution in venous valve sinuses, the interactions between fluid flow and RBCs have not been elucidated. Here, using a dilute cell suspension in an in vitro microfluidic model of a venous valve, we quantified the spatial distribution of RBCs by microscopy and image analysis, and using micro-particle image velocimetry and 3D computational fluid dynamics simulations, we analyzed the complex flow patterns. The results show that the local hematocrit in the valve pockets is spatially heterogeneous and is significantly different from the feed hematocrit. Above a threshold shear rate, the inertial separation of streamlines and lift forces contribute to an uneven distribution of RBCs in the vortices, the entrapment of RBCs in the vortices, and non-monotonic wall shear stresses in the valve pockets. Our experimental and computational characterization provides insights into the complex interactions between fluid flow, RBC distribution, and wall shear rates in venous valve mimics, which is of relevance to understanding the pathophysiology of thrombosis and improving cell separation efficiency.

8.
J Vis Exp ; (157)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32250350

RESUMO

We introduce an approach to study the formation and growth of hydrates under the influence of nonionic surfactants. The experimental system includes a temperature regulator, visualization techniques, and inner pressure measurements. The temperature control system contains a low-cost, programmable temperature regulator made with solid-state Peltier components. Along with the temperature control system, we incorporated visualization techniques and internal pressure measurements to study hydrate formation and inhibition in the presence of nonionic surfactants. We studied the hydrate-inhibiting ability of nonionic surfactants (sorbitane monolaurate, sorbitane monooleate, PEG-PPG-PEG, and polyoxyethylenesorbitan tristearate) at low (i.e., 0.1 CMC), medium (i.e., CMC), and high (i.e., 10 CMC) concentrations. Two types of crystals were formed: planar and conical. Planar crystals were formed in plain water and low surfactant concentrations. Conical crystals were formed in high surfactant concentrations. The results of the study show that conical crystals are the most effective in terms of hydrate inhibition. Because conical crystals cannot grow past a certain size, the hydrate growth rate as a conical crystal is slower than the hydrate growth rate as planar crystal. Hence, surfactants that force hydrates to form conical crystals are the most efficient. The goal of the protocol is to provide a detailed description of an experimental system that is capable of investigating the cyclopentane hydrate crystallization process on the surface of a water droplet in the presence of surfactant molecules.


Assuntos
Tensoativos/química , Água/química , Cristalização , Ciclopentanos/química , Tensoativos/análise , Temperatura
9.
Life Sci Alliance ; 1(5): e201800086, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456379

RESUMO

Imaging of transcription by quantitative fluorescence-based techniques allows the examination of gene expression kinetics in single cells. Using a cell system for the in vivo visualization of mammalian mRNA transcriptional kinetics at single-gene resolution during the cell cycle, we previously demonstrated a reduction in transcription levels after replication. This phenomenon has been described as a homeostasis mechanism that buffers mRNA transcription levels with respect to the cell cycle stage and the number of transcribing alleles. Here, we examined how transcriptional buffering enforced during S phase affects two different promoters, the cytomegalovirus promoter versus the cyclin D1 promoter, that drive the same gene body. We found that global modulation of histone modifications could completely revert the transcription down-regulation imposed during replication. Furthermore, measuring these levels of transcriptional activity in fixed and living cells showed that the transcriptional potential of the genes was significantly higher than actual transcription levels, suggesting that promoters might normally be limited from reaching their full transcriptional potential.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26465506

RESUMO

The stochastic process of gene expression is commonly controlled at the level of RNA transcription. The synthesis of messenger RNA (mRNA) is a multistep process, performed by RNA polymerase II and controlled by many transcription factors. Although mRNA transcription is intensively studied, real-time in vivo dynamic rates of a single transcribing polymerase are still not available. A popular method for examining transcription kinetics is the fluorescence recovery after photobleaching (FRAP) approach followed by kinetic modeling. Such analysis has yielded a surprisingly broad range of transcription rates. As transcription depends on many variables such as the chromatin state, binding and unbinding of transcription factors, and cell phase, transcription rates are stochastic variables. Thus, the distribution of rates is expected to follow Poissonian statistics, which does not coincide with the wide range of transcription rate results. Here we present an approach for analyzing FRAP data for single-gene transcription. We find that the transcription dynamics of a single gene can be described with a constant rate for all transcribing polymerases, while cell population transcription rates follow a fat-tailed distribution. This distribution suggests a larger probability for extreme rates than would be implied by normal distribution. Our analysis supports experimental results of transcription from two different promoters, and it explains the puzzling observation of extreme average rate values of transcription.


Assuntos
Modelos Genéticos , Transcrição Gênica , Simulação por Computador , Ciclina D1/genética , Ciclina D1/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Microscopia Confocal , Distribuição de Poisson , RNA Mensageiro/metabolismo , Processos Estocásticos , Transfecção
11.
Lab Chip ; 14(22): 4324-8, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25190188

RESUMO

We describe the use of chemical diffusion and reaction to record temporally varying chemical information as spatial patterns without the need for external power. Diffusion of chemicals acts as a clock, while reactions forming immobile products possessing defined optical properties perform sensing and recording functions simultaneously. The spatial location of the products reflects the history of exposure to the detected substances of interest. We refer to our device as a time capsule and show an initial proof of principle in the autonomous detection of lead ions in water.

12.
ACS Appl Mater Interfaces ; 6(23): 21446-53, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25347285

RESUMO

This study describes the design and synthesis of amphiphilic silica nanoparticles for the stabilization of aqueous drops in fluorinated oils for applications in droplet microfluidics. The success of droplet microfluidics has thus far relied on one type of surfactant for the stabilization of drops. However, surfactants are known to have two key limitations: (1) interdrop molecular transport leads to cross-contamination of droplet contents, and (2) the incompatibility with the growth of adherent mammalian cells as the liquid-liquid interface is too soft for cell adhesion. The use of nanoparticles as emulsifiers overcomes these two limitations. Particles are effective in mitigating undesirable interdrop molecular transport as they are irreversibly adsorbed to the liquid-liquid interface. They do not form micelles as surfactants do, and thus, a major pathway for interdrop transport is eliminated. In addition, particles at the droplet interface provide a rigid solid-like interface to which cells could adhere and spread, and are thus compatible with the proliferation of adherent mammalian cells such as fibroblasts and breast cancer cells. The particles described in this work can enable new applications for high-fidelity assays and for the culture of anchorage-dependent cells in droplet microfluidics, and they have the potential to become a competitive alternative to current surfactant systems for the stabilization of drops critical for the success of the technology.


Assuntos
Proliferação de Células/efeitos dos fármacos , Microfluídica , Nanopartículas/química , Adsorção , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Emulsões , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Nanopartículas/administração & dosagem , Dióxido de Silício/química , Água/química
13.
Nat Protoc ; 8(2): 393-408, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23424748

RESUMO

Transcription kinetics of actively transcribing genes in vivo have generally been measured using tandem gene arrays. However, tandem arrays do not reflect the endogenous state of genome organization in which genes appear as single alleles. Here we present a robust technique for the quantification of mRNA synthesis from a single allele in real time in single living mammalian cells. The protocol describes how to generate cell clones harboring an MS2-tagged allele and how to detect in vivo transcription from this tagged allele at high spatial and temporal resolution throughout the cell cycle. Quantification of nascent mRNAs produced from the single tagged allele is performed using RNA fluorescence in situ hybridization (FISH) and live-cell imaging. Subsequent analyses and data modeling detailed in the protocol include measurements of transcription rates of RNA polymerase II, determination of the number of polymerases recruited to the tagged allele and measurement of the spacing between polymerases. Generation of the cells containing the single tagged alleles should take up to 1 month; RNA FISH or live-cell imaging will require an additional week.


Assuntos
Alelos , Clonagem Molecular/métodos , Regulação da Expressão Gênica/fisiologia , RNA Mensageiro/biossíntese , Transcrição Gênica/fisiologia , Animais , Regulação da Expressão Gênica/genética , Hibridização in Situ Fluorescente , RNA Polimerase II/metabolismo , Transcrição Gênica/genética
14.
Invest Ophthalmol Vis Sci ; 54(4): 2720-32, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23513065

RESUMO

PURPOSE: We explore the unique rheological and structural properties of human and bovine meibomian lipids to provide insight into the physical behavior of the human tear-film lipid layer (TFLL). METHODS: Bulk rheological properties of pooled meibomian lipids were measured by a commercial stress-controlled rheometer; a home-built interfacial stress rheometer (ISR) probed the interfacial viscoelasticity of spread layers of meibomian lipids. Small- and wide-angle x-ray scattering detected the presence and melting of dispersed crystal structures. Microscope examination under cross polarizers provided confirmation of ordered crystals. A differential scanning calorimeter (DSC) analyzed phase transitions in bulk samples of bovine meibum. RESULTS: Bulk and interfacial rheology measurements show that meibum is extremely viscous and highly elastic. It is also a non-Newtonian, shear-thinning fluid. Small- and wide-angle x-ray diffraction (SAXS and WAXS), as well as differential scanning calorimetry (DSC) and polarizing microscopy, confirm the presence of suspended lamellar-crystal structures at physiologic temperature. CONCLUSIONS: We studied meibum architecture and its relation to bulk and interfacial rheology. Bovine and human meibomian lipids exhibit similar physical properties. From all structural probes utilized, we find a melt transition near eye temperature at which lamellar crystals liquefy. Our proposed structure for the tear-film lipid layer at physiologic temperature is a highly viscoelastic, shear-thinning liquid suspension consisting of lipid lamellar-crystallite particulates immersed in a continuous liquid phase with no long-range order. When spread over on-eye tear, the TFLL is a duplex film that exhibits bulk liquid properties and two separate interfaces, air/lipid and water/lipid, with aqueous protein and surfactantlike lipids adsorbed at the water/lipid surface.


Assuntos
Lipídeos/química , Glândulas Tarsais/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Ciclotrons , Humanos , Microscopia de Polarização , Reologia , Espalhamento de Radiação , Lágrimas/química , Substâncias Viscoelásticas , Viscosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA