Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Clin Microbiol ; 57(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434720

RESUMO

Enterobacteriaceae represent a diverse and medically important family of bacteria that are difficult to identify to the species level using the standard molecular method of 16S rRNA gene sequencing. Prior work has demonstrated the value of dnaJ gene sequence analysis in resolving different members of the family. However, existing protocols are not optimized for clinical use and exhibit several limitations in practice. Here, we describe an improved assay for dnaJ-based identification of Enterobacteriaceae which boasts increased broad-range specificity across genera, shorter amplicon sizes that are suitable for use with formalin-fixed or direct patient specimens, and enhanced amplification efficiency and assay sensitivity through the incorporation of locked nucleic acid chemistries. Sequence analysis of public databases indicates that the partial dnaJ sequence interrogated by this design retains high discriminatory power among Enterobacteriaceae genera and species, with only particular lineages of Shigella sp. and Escherichia coli proving unresolvable. Limits of detection studies using 8 disparate species indicated that amplification was consistently achievable across organisms and allowed robust dideoxynucleotide chain terminator sequencing from as little as 10 genome equivalents of template, depending on the species interrogated. Retrospective application of the dnaJ assay to patient specimens enabled unambiguous classification of Enterobacteriaceae to the species level in 22 of 27 (81.5%) positive specimens examined, with most remaining cases representing unresolvable calls between closely related Escherichia coli and Shigella species. We expect that this assay will facilitate the accurate molecular identification of species from the Enterobacteriaceae family in a variety of clinical specimens and diagnostic contexts.


Assuntos
Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/classificação , Proteínas de Choque Térmico HSP40/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Primers do DNA/genética , DNA Bacteriano/análise , Infecções por Enterobacteriaceae/diagnóstico , Proteínas de Escherichia coli/genética , Genótipo , Humanos , Limite de Detecção , Oligonucleotídeos/genética , Filogenia , RNA Ribossômico 16S/genética
2.
Clin Chem ; 62(11): 1465-1473, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27624135

RESUMO

BACKGROUND: Humans suffer from infections caused by single species or more complex polymicrobial communities. Identification of infectious bacteria commonly employs microbiological culture, which depends upon the in vitro propagation and isolation of viable organisms. In contrast, detection of bacterial DNA using next generation sequencing (NGS) allows culture-independent microbial profiling, potentially providing important new insights into the microbiota in clinical specimens. METHODS: NGS 16S rRNA gene sequencing (NGS16S) was compared with culture using (a) synthetic polymicrobial samples for which the identity and abundance of organisms present were precisely defined and (b) primary clinical specimens. RESULTS: Complex mixtures of at least 20 organisms were well resolved by NGS16S with excellent reproducibility. In mixed bacterial suspensions (107 total genomes), we observed linear detection of a target organism over a 4-log concentration range (500-3 × 106 genomes). NGS16S analysis more accurately recapitulated the known composition of synthetic samples than standard microbiological culture using nonselective media, which distorted the relative abundance of organisms and frequently failed to identify low-abundance pathogens. However, extended quantitative culture using selective media for each of the component species recovered the expected organisms at the proper abundance, validating NGS16S results. In an analysis of sputa from cystic fibrosis patients, NGS16S identified more clinically relevant pathogens than standard culture. CONCLUSIONS: Biases in standard, nonselective microbiological culture lead to a distorted characterization of polymicrobial mixtures. NGS16S demonstrates enhanced reproducibility, quantification, and classification accuracy compared with standard culture, providing a more comprehensive, accurate, and culture-free analysis of clinical specimens.


Assuntos
Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , DNA Bacteriano/genética , Técnicas Microbiológicas/normas , Análise de Sequência de DNA/tendências , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/normas
3.
Int J Infect Dis ; 112: 330-337, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562627

RESUMO

BACKGROUND: Urine cell-free DNA (cfDNA) is an attractive target for diagnosing pulmonary Mycobacterium tuberculosis (MTB) infection, but has not been thoroughly characterized as a biomarker. METHODS: This study was performed to investigate the size and composition of urine cfDNA from tuberculosis (TB) patients with minimal bias using next-generation sequencing (NGS). A combination of DNA extraction and single-stranded sequence library preparation methods demonstrated to recover short, highly degraded cfDNA fragments was employed. Urine cfDNA from 10 HIV-positive patients with pulmonary TB and two MTB-negative controls was examined. RESULTS: MTB-derived cfDNA was identifiable by NGS from all MTB-positive patients and was absent from negative controls. MTB cfDNA was significantly shorter than human cfDNA, with median fragment lengths of ≤19-52 bp and 42-92 bp, respectively. MTB cfDNA abundance increased exponentially with decreased fragment length, having a peak fragment length of ≤19 bp in most samples. In addition, we identified a larger fraction of short human genomic cfDNA, ranging from 29 to 53 bp, than previously reported. Urine cfDNA fragments spanned the MTB genome with relative uniformity, but nucleic acids derived from multicopy elements were proportionately over-represented. CONCLUSIONS: TB urine cfDNA is a potentially powerful biomarker but is highly fragmented, necessitating special procedures to maximize its recovery and detection.


Assuntos
Ácidos Nucleicos Livres , Mycobacterium tuberculosis , Tuberculose Pulmonar/diagnóstico , Biomarcadores/urina , Ácidos Nucleicos Livres/urina , DNA Bacteriano/urina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mycobacterium tuberculosis/genética
4.
Sci Rep ; 10(1): 5446, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214207

RESUMO

Optimal clinical decision-making depends on identification of clinically relevant organisms present in a sample. Standard microbiological culture may fail to identify unusual or fastidious organisms and can misrepresent relative abundance of sample constituents. Culture-independent methods have improved our ability to deconvolute polymicrobial patient samples. We used next-generation 16S rRNA gene sequencing (NGS16S) to determine how often cultivatable organisms in complex polymicrobial samples are not reported by standard culture. Twenty consecutive bronchoalveolar lavage (BAL) samples were plated to standard and additional media; bacteria were identified by NGS16S analysis of DNA extracted directly from samples or from washed culture plates. 96% of organisms identified were cultivable, but only 21% were reported by standard culture, indicating that standard work-up provides an incomplete assessment of microbial constituents. Direct NGS16S correlated well with standard culture, identifying the same predominant organism in 50% of samples. When predominant organisms differed, NGS16S most often detected anaerobes, whose growth is unsupported by standard culture conditions for this specimen. NGS16S identified more organisms per sample and allowed identification of fastidious organisms, while culture was better at capturing organisms when bacterial load was low, and allowed incidental recovery of non-bacterial pathogens. Molecular and culture-based methods together detect more organisms than either method alone.


Assuntos
Coinfecção/microbiologia , Técnicas de Cultura/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas Microbiológicas/métodos , Técnicas Microbiológicas/normas , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Técnicas de Cocultura/métodos , DNA Bacteriano/isolamento & purificação , Humanos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA