Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Phys Chem Chem Phys ; 25(16): 11268-11277, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37060120

RESUMO

The paper elucidates the main driving mechanisms at play during the early stage of the Ti/CuO thermite reaction using reactive forcefields in the frame of molecular dynamics calculations. Results show that TiO preferentially forms in immediate contact to pure Ti at temperatures as low as 200 K rather than TiO2. Increasing the temperature to 700 K, the 2 nm TiO2 in contact to Ti is found to be homogeneously depleted from half of its oxygen atoms. Also, the first signs of CuO decomposition are observed at 600 K, in correlation with the impoverishment in oxygen atom reaching the titanium oxide layer immediately in contact to CuO. Further quantification of the oxygen and titanium mass transport at temperatures above 700 K suggests that mostly oxygen atoms migrate from and across the titanium oxide interfacial layer to further react with the metallic titanium fuel reservoir. This scenario is opposed to the one of the Al/CuO system, for which the mass transport is dominated by the Al fuel diffusion across alumina. Further comparison of both thermites sheds light on the enhanced reactivity of the Ti-based thermite, for which CuO decomposition is promoted at lower temperature, and offers a novel understanding of thermite initiation at large.

2.
Nanotechnology ; 33(46)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35914514

RESUMO

In this study, we demonstrate the effect of change of the sputtering power and the deposition pressure on the ignition and the combustion properties of Al/CuO reactive thin films. A reduced sputtering power of Al along with the deposition carried out at a higher-pressure result in a high-quality thin film showing a 200% improvement in the burn rate and a 50% drop in the ignition energy. This highlights the direct implication of the change of the process parameters on the responsivity and the reactivity of the reactive film while maintaining the Al and CuO thin-film integrity both crystallographically and chemically. Atomically resolved structural and chemical analyzes enabled us to qualitatively determine how the microstructural differences at the interface (thickness, stress level, delamination at high temperatures and intermixing) facilitate the Al and O migrations and impact the overall nano-thermite reactivity. We found that the deposition of CuO under low pressure produces well-defined and similar Al-CuO and CuO-Al interfaces with the least expected intermixing. Our investigations also showed that the magnitude of residual stress induced during the deposition plays a decisive role in influencing the overall nano-thermite reactivity. Higher is the magnitude of the tensile residual stress induced, stronger is the presence of gaseous oxygen at the interface. By contrast, high compressive interfacial stress aids in preserving the Al atoms for the main reaction while not getting expended in the interface thickening. Overall, this analysis helped in understanding the effect of change of deposition conditions on the reactivity of Al/CuO nanolaminates and several handles that may be pulled to optimize the process better by means of physical engineering of the interfaces.

3.
J Phys Chem A ; 126(7): 1245-1254, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35157461

RESUMO

Novel properties associated with nanothermites have attracted great interest for several applications, including lead-free primers and igniters. However, the prediction of quantitative structure-energetic performance relationships is still challenging. This study investigates machine learning methods as tools to surrogate complex physical models to design novel nanothermites with optimized burning rates chosen for energetic performance. The study focuses on Al/CuO nanolaminates, for which nine supervised regressors commonly used in ML applied to materials science are investigated. For each, an ML model is built using a database containing a set of 2700 Al/CuO nanolaminate systems, specifically generated for this study. We demonstrate the superiority of the multilayer perceptron algorithm to surrogate conventional physical-based models and predict the Al/CuO nanolaminate microstructure-burn rate relationship with good efficiency: the burn rate is estimated with less than 1% error (0.07 m·s-1), which is very good for designing nano-engineered energetic materials, knowing that it typically varies from approximately 8-20 m·s-1. In addition, the optimization of the Al/CuO nanolaminate structure for burn rate maximization through machine learning takes a few milliseconds, against several days to achieve this task using a physical model, and months experimentally.


Assuntos
Cobre , Aprendizado de Máquina , Algoritmos , Cobre/química
4.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684528

RESUMO

The effect of the interface layer on energy release in nanoenergetic composite films is important and challenging for the utilization of energy. Nano Al/CuO composite films with different modulation periods were prepared by magnetron sputtering and tested by differential scanning calorimetry. With the increase in the modulation period of the nano Al/CuO energetic composite films, the interface layer contained in the energetic composite film decreased meaningfully, increasing the total heat release meaningfully. Ab initio molecular dynamics (AIMD) simulation were carried out to study the preparation process changes and related properties of the nano Al/CuO energetic composite films under different configurations at 400 K. The results showed that the diffusion of oxygen atoms first occurred at the upper and lower interfaces of CuO and Al, forming AlOx and CuxAlyOz. The two-modulation-period structure changed more obviously than the one-modulation-period structure, and the reaction was faster. The propagation rate and reaction duration of the front end of the diffusion reaction fronts at the upper and lower interfaces were different. The Helmholtz free energy loss of the nano Al/CuO composite films with a two-modulation-period configuration was large, and the number of interfacial layers had a great influence on the Helmholtz free energy, which was consistent with the results of the thermal analysis. Current molecular dynamics studies may provide new insights into the nature and characteristics of fast thermite reactions in atomic detail.

5.
Nanotechnology ; 32(21)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33592601

RESUMO

It was experimentally found that silica and gold particles can modify the combustion properties of nanothermites but the exact role of the thermal properties of these additives on the propagating combustion front relative to other potential contributions remains unknown. Gold and silica particles of different sizes and volume loadings were added into aluminum/copper oxide thermites. Their effects on the flame front dynamics were investigated experimentally using microscopic dynamic imaging techniques and theoretically via a reaction model coupling mass and heat diffusion processes. A detailed theoretical analysis of the local temperature and thermal gradients at the vicinity of these two additives shows that highly conductive inclusions do not accelerate the combustion front while poor conductive inclusions result in the distortion of the flame front (corrugation), and therefore produce high thermal gradients (up to 1010K.m-1) at the inclusion/host material interface. This results in an overall slowing down of the combustion front. These theoretical findings contradict the experimental observations in which a net increase of the flame front velocity was found when Au and SiO2particles are added into the thermite. This leads to the conclusion that the faster burn rate observed experimentally cannot be fully associated with thermal effects only, but rather on chemical (catalytic) and/or mechanical mechanisms: formation of highly-stressed zones around the inclusion promoting the reactant mixing. One additional experiment in which physical SiO2particles were replaced by voids (filled with Ar during experiment) to cancel the potential mechanical effects while preserving the thermal inhomogeneity in the thermite structure confirms the hypothesis that instead of pure thermal conduction, it is the mechanical mechanisms that dominate the propagation velocity in our specific Al/CuO multilayered films.

6.
Phys Chem Chem Phys ; 21(29): 16180-16189, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31298248

RESUMO

We report on a new strategy to synthesize Al/CuO nanothermites from commercial Al and ultra-small chemically synthesized CuO nanoparticles coated with alkylamine ligands. These usual ligands stabilize the CuO nanoparticles and prevent them from aggregating, with the goal to enhance the interfacial contact between Al and CuO particles. Using a variety of characterization techniques, including microscopy, spectroscopy, mass spectrometry and calorimetry (ATG/DSC), the structural and chemical evolution of CuO nanoparticles stabilized with alkylamine ligands is analyzed upon heating. This enables us to describe the main decomposition processes taking place on the CuO surface at low temperature (<500 °C): the ligands fragment into organic species accompanied with H2O and CO2 release, which promotes CuO reduction into Cu2O and further Cu. We quantitatively discuss these chemical processes highlighting for the first time the crucial importance of the synthesis conditions that control the chemical purity of the organic ligands (octylamine molecules and derivatives such as carbamate and ammonium ions) in the nanothermite performance. From these findings, an effective method to overcome the ligand-induced CuO degradation at low temperature is proposed and the Al/CuO nanothermite reaction is analyzed, in terms of onset temperature and energy released. We produce original structures composed of aluminium nanoparticles embedded in CuO grainy matrices exhibiting an onset temperature ∼200 °C below the usual Al/CuO onset temperatures, having specific combustion profiles depending on the synthesis conditions, while preserving the total amount of energy released.

7.
Langmuir ; 34(5): 1932-1940, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316786

RESUMO

The integration of high-purity nano-objects on substrates remains a great challenge for addressing scaling-up issues in nanotechnology. For instance, grafting gold nanoparticles (NPs) on zinc oxide films, a major step process for catalysis or photovoltaic applications, still remains difficult to master. We report a modified photodeposition (P-D) approach that achieves tight control of the NPs size (7.5 ± 3 nm), shape (spherical), purity, and high areal density (3500 ± 10 NPs/µm2) on ZnO films. This deposition method is also compatible with large ZnO surface areas. Combining electronic microscopy and X-ray photoelectron spectroscopy measurements, we demonstrate that growth occurs primarily in confined spaces (between the grains of the ZnO film), resulting in gold NPs embedded within the ZnO surface grains thus establishing a unique NPs/surface arrangement. This modified P-D process offers a powerful method to control nanoparticle morphology and areal density and to achieve strong Au interaction with the metal oxide substrate. This work also highlights the key role of ZnO surface morphology to control the NPs density and their size distribution. Furthermore, we experimentally demonstrate an increase of the ZnO photocatalytic activity due to high densities of Au NPs, opening applications for the decontamination of water or the photoreduction of water for hydrogen production.

8.
Langmuir ; 33(43): 12193-12203, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28960992

RESUMO

DNA-directed assembly of nano-objects as a means to manufacture advanced nanomaterial architectures has been the subject of many studies. However, most applications have dealt with noble metals as there are fundamental difficulties to work with other materials. In this work, we propose a generic and systematic approach for functionalizing and characterizing oxide surfaces with single-stranded DNA oligonucleotides. This protocol is applied to aluminum and copper oxide nanoparticles due to their great interest for the fabrication of highly energetic heterogeneous nanocomposites. The surface densities of streptavidin and biotinylated DNA oligonucleotides are precisely quantified combining atomic absorption spectroscopy with conventional dynamic light scattering and fluorometry and maximized to provide a basis for understanding the grafting mechanism. First, the streptavidin coverage is consistently below 20% of the total surface for both nanoparticles. Second, direct and unspecific grafting of DNA single strands onto Al and CuO nanoparticles largely dominates the overall functionalization process: ∼95% and 90% of all grafted DNA strands are chemisorbed on the CuO and Al nanoparticle surfaces, respectively. Measurements of hybridization efficiency indicate that only ∼5 and ∼10% of single-stranded oligonucleotides grafted onto the CuO and Al surfaces are involved in the hybridization process, corresponding precisely to the streptavidin coverage, as evidenced by the occupancy of 0.9 and 1.2 oligonucleotides per protein. The hybridization efficiency of single-stranded oligonucleotides chemisorbed on CuO and Al without streptavidin coating decreases to only ∼2%, justifying the use of streptavidin despite its poor surface occupancy. Finally, the structure of directly chemisorbed DNA strands onto oxide surfaces is examined and discussed.


Assuntos
Nanopartículas , Cobre , DNA , Hibridização de Ácido Nucleico , Oligonucleotídeos , Óxidos
9.
Langmuir ; 33(41): 11086-11093, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28950064

RESUMO

Al/CuO energetic structure are attractive materials due to their high thermal output and propensity to produce gas. They are widely used to bond components or as next generation of MEMS igniters. In such systems, the reaction process is largely dominated by the outward migration of oxygen atoms from the CuO matrix toward the aluminum layers, and many recent studies have already demonstrated that the interfacial nanolayer between the two reactive layers plays a major role in the material properties. Here we demonstrate that the ALD deposition of a thin ZnO layer on the CuO prior to Al deposition (by sputtering) leads to a substantial increase in the efficiency of the overall reaction. The CuO/ZnO/Al foils generate 98% of their theoretical enthalpy within a single reaction at 900 °C, whereas conventional ZnO-free CuO/Al foils produce only 78% of their theoretical enthalpy, distributed over two distinct reaction steps at 550 °C and 850 °C. Combining high-resolution transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry, we characterized the successive formation of a thin zinc aluminate (ZnAl2O4) and zinc oxide interfacial layers, which act as an effective barrier layer against oxygen diffusion at low temperature.

10.
Langmuir ; 32(37): 9676-86, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27578445

RESUMO

The DNA-directed assembly of nano-objects has been the subject of many recent studies as a means to construct advanced nanomaterial architectures. Although much experimental in silico work has been presented and discussed, there has been no in-depth consideration of the proper design of single-strand sticky termination of DNA sequences, noted as ssST, which is important in avoiding self-folding within one DNA strand, unwanted strand-to-strand interaction, and mismatching. In this work, a new comprehensive and computationally efficient optimization algorithm is presented for the construction of all possible DNA sequences that specifically prevents these issues. This optimization procedure is also effective when a spacer section is used, typically repeated sequences of thymine or adenine placed between the ssST and the nano-object, to address the most conventional experimental protocols. We systematically discuss the fundamental statistics of DNA sequences considering complementarities limited to two (or three) adjacent pairs to avoid self-folding and hybridization of identical strands due to unwanted complements and mismatching. The optimized DNA sequences can reach maximum lengths of 9 to 34 bases depending on the level of applied constraints. The thermodynamic properties of the allowed sequences are used to develop a ranking for each design. For instance, we show that the maximum melting temperature saturates with 14 bases under typical solvation and concentration conditions. Thus, DNA ssST with optimized sequences are developed for segments ranging from 4 to 40 bases, providing a very useful guide for all technological protocols. An experimental test is presented and discussed using the aggregation of Al and CuO nanoparticles and is shown to validate and illustrate the importance of the proposed DNA coding sequence optimization.


Assuntos
DNA/química , Nanopartículas
11.
Micromachines (Basel) ; 13(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35334667

RESUMO

Pyrotechnic systems, also termed pyrotechnics, refer to a broad family of sophisticated single-use devices that are able to produce heat, light, smoke, sound, motion, and/or a combination of these thanks to the reaction of an energetic material (primary and secondary explosives, powders/propellants, and other pyrotechnic substances) [...].

12.
ACS Appl Mater Interfaces ; 14(25): 29451-29461, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699731

RESUMO

This theoretical work aims to understand the influence of nanopores at CuO-Al nanothermite interfaces on the initial stage of thermite reaction. ReaxFF molecular dynamics simulations were run to investigate the chemical and structural evolution of the reacting interface between the fuel, Al, and oxidizer, CuO, between 400 and 900 K and considering interfaces with and without a pore. Results show that the initial alumina layer becomes enriched with Al and grows primarily into the Al metal at higher temperatures. The modification of alumina is driven by simultaneous Al and O migration between metallic Al and the native amorphous Al2O3 layer. However, the presence of a pore significantly affects the growth kinetics and the composition of this alumina layer at temperatures exceeding 600 K, which impacts the initiation properties of the nanothermite. In the system without a pore, where Al is in direct contact with CuO, a ternary aluminate layer, a mixture of Al, O, and Cu, is formed at 800 K, which slows Al and O diffusion, thus compromising the nanothermite reactivity in fully dense Al/CuO composites. Conversely, the presence of a pore between Al and CuO promotes Al enrichment of the alumina layer above 600 K. At that temperature, any free oxygen molecules in the pore become attached to the reactive alumina surface resulting in a rapid oxygen pressure drop in the pore. This is expected to accelerate the reduction of the adjacent CuO as observed in experiments with Al/CuO composites with porosity at the CuO-Al interfaces.

13.
Dalton Trans ; 51(40): 15300-15311, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35983906

RESUMO

Anatase/rutile constituting TiO2 thin films were prepared by sputter deposition, and the influence of the post-annealing step with a narrow window at 200 °C revealed a gaining factor of 5 in H2 production. An in-depth analysis of the photocatalytic performance revealed the dominant role of intermediate states rather than the heterocrystalline nature and the mesoscale structure. Structural, chemical and optical investigations based on scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-visible spectroscopy and photoluminescence supported by ab initio calculation correlated the H2 production with the dual presence of OH- and Ti3+ defects in the form of titanium interstitial atoms. In addition, steady-state photoluminescence measurements determined the chemically active role of ethanol, commonly used as a hole scavenger, in inducing deep hole traps upon dissociation on the surface. These results give new directions for the design of TiO2 based photocatalytic systems for light-driven H2 production through water splitting, guided by a detailed description of defects present on the electronic structure and their chemical identification.

14.
Micromachines (Basel) ; 12(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498708

RESUMO

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.

15.
Nanomaterials (Basel) ; 10(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053726

RESUMO

Sputter-deposited Al/CuO multilayers are used to manufacture tunable igniters and actuators, with applications in various fields such as defense, space and infrastructure safety. This paper describes the technology of deposition and the characteristics of Al/CuO multilayers, followed by some examples of the applications of these energetic layers.

16.
J Nanosci Nanotechnol ; 9(2): 1418-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19441537

RESUMO

Pure, large-area, and aligned CuO nanowires are realized from copper thin film deposited onto silicon substrate by thermal annealing under a N2/O2 gas flow. The as-prepared pure and vertically aligned CuO nanowires along silicon substrate have several advantages over previous approaches such as easier integration into silicon based micro systems, more convenience for subsequent elements deposition, and higher heat of reaction for realization of CuO/Al based nano energetic materials. It is found that long and aligned nanowires can only be formed within a narrow temperature range from 400 to 500 degrees C. A N2/O2 gas flow rate of 400/100 sccm is moderate for realizing long and aligned CuO nanowires. The synthesized nanowires and thin film beneath the nanowires are confirmed to be pure CuO using X-ray diffraction. The CuO nanowires are found to be bicrystal by high resolution transmission electron microscopy.

17.
Bioelectrochemistry ; 128: 17-29, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30884360

RESUMO

The early formation of electroactive biofilms was investigated with gold electrodes inoculated with Geobacter sulfurreducens. Biofilms were formed under an applied potential of 0.1 V/SCE, with a single batch of acetate 10 mM, on flat gold electrodes with different random surface roughness. Roughness with arithmetical mean height (Sa) ranging from 0.5 to 6.7 µm decreased the initial latency time, and increased the current density by a factor of 2.7 to 6.7 with respect to nano-rough electrodes (Sa = 4.5 nm). The current density increased linearly with Sa up to 14.0 A·m-2 for Sa of 6.7 µm. This linear relationship remained valid for porous gold. In this case, the biofilm rapidly formed a uniform layer over the pores, so porosity impacted the current only by modifying the roughness of the upper surface. The current density thus reached 14.8 ±â€¯1.1 A·m-2 with Sa of 7.6 µm (7 times higher than the nano-rough electrodes). Arrays of 500-µm-high micro-pillars were roughened following the same protocol. In this case, roughening resulted in a modest gain around 1.3-fold. A numerical model showed that the modest enhancement was due to ion transport not being sufficient to mitigate the local acidification of the structure bottom.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/instrumentação , Eletrodos , Geobacter/metabolismo , Biofilmes/crescimento & desenvolvimento , Geobacter/crescimento & desenvolvimento , Ouro/química , Microscopia Eletrônica de Varredura , Porosidade , Propriedades de Superfície
18.
J Nanosci Nanotechnol ; 8(11): 5903-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19198324

RESUMO

Two-dimensional nanostructures have various interesting applications due to their large surface areas. In this study, we propose a simple approach to synthesize two-dimensional NiO nano honeycomb by thermal annealing of Ni thin film deposited onto silicon substrate by thermal evaporation. The effects on the nano honeycomb morphology of the annealing temperature and time are investigated. Because the NiO nano honeycomb is realized onto silicon substrate, a basic material for microelectronics and micro-system, this will probably open the door to integrate the nano honeycomb into micro-system, thus leading to nano based functional devices. The as-synthesized NiO nano honeycomb is characterized by SEM, XRD, and surface area measurement.


Assuntos
Cristalização/métodos , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Níquel/química , Silício/química , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
19.
Bioelectrochemistry ; 121: 191-200, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29482111

RESUMO

Smooth and nano-rough flat gold electrodes were manufactured with controlled Ra of 0.8 and 4.5nm, respectively. Further nano-rough surfaces (Ra 4.5nm) were patterned with arrays of micro-pillars 500µm high. All these electrodes were implemented in pure cultures of Geobacter sulfurreducens, under a constant potential of 0.1V/SCE and with a single addition of acetate 10mM to check the early formation of microbial anodes. The flat smooth electrodes produced an average current density of 0.9A·m-2. The flat nano-rough electrodes reached 2.5A·m-2 on average, but with a large experimental deviation of ±2.0A·m-2. This large deviation was due to the erratic colonization of the surface but, when settled on the surface, the cells displayed current density that was directly correlated to the biofilm coverage ratio. The micro-pillars considerably improved the experimental reproducibility by offering the cells a quieter environment, facilitating biofilm development. Current densities of up to 8.5A·m-2 (per projected surface area) were thus reached, in spite of rate limitation due to the mass transport of the buffering species, as demonstrated by numerical modelling. Nano-roughness combined with micro-structuring increased current density by a factor close to 10 with respect to the smooth flat surface.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Eletricidade , Eletrodos , Transporte de Elétrons , Desenho de Equipamento , Propriedades de Superfície
20.
ACS Appl Mater Interfaces ; 8(20): 13104-13, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27145017

RESUMO

Nanoenergetic materials are beginning to play an important role in part because they are being considered as energetic components for materials, chemical, and biochemical communities (e.g., microthermal sources, microactuators, in situ welding and soldering, local enhancement of chemical reactions, nanosterilization, and controlled cell apoptosis) and because their fabrication/synthesis raises fundamental challenges that are pushing the engineering and scientific frontiers. One such challenge is the development of processes to control and enhance the reactivity of materials such as energetics of nanolaminates, and the understanding of associated mechanisms. We present here a new method to substantially decrease the reaction onset temperature and in consequence the reactivity of nanolaminates based on the incorporation of a Cu nanolayer at the interfaces of Al/CuO nanolaminates. We further demonstrate that control of its thickness allows accurate tuning of both the thermal transport and energetic properties of the system. Using high resolution transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry to analyze the physical, chemical and thermal characteristics of the resulting Al/CuO + interfacial Cu nanolaminates, we find that the incorporation of 5 nm Cu at both Al/CuO and CuO/Al interfaces lowers the onset temperature from 550 to 475 °C because of the lower-temperature formation of Al-Cu intermetallic phases and alloying. Cu intermixing is different in the CuO/Cu/Al and Al/Cu/CuO interfaces and independent of total Cu thickness: Cu readily penetrates into Al grains upon annealing to 300 °C, leading to Al/Cu phase transformations, while Al does not penetrate into Cu. Importantly, θ-Al2Cu nanocrystals are created below 63% wt Cu/Al, and coexist with the Al solid solution phase. These well-defined θ-Al2Cu nanocrystals seem to act as embedded Al+CuO energetic reaction triggers that lower the onset temperature. We show that ∼10 nm thick Cu at Al/CuO interfaces constitutes the optimum amount to increase both reactivity and overall heat of reaction by a factor of ∼20%. Above this amount, there is a rapid decrease of the heat of reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA