Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 598(7882): 646-651, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646022

RESUMO

µ-Opioid peptide receptor (MOPR) stimulation alters respiration, analgesia and reward behaviour, and can induce substance abuse and overdose1-3. Despite its evident importance, the endogenous mechanisms for MOPR regulation of consummatory behaviour have remained unknown4. Here we report that endogenous MOPR regulation of reward consumption in mice acts through a specific dorsal raphe to nucleus accumbens projection. MOPR-mediated inhibition of raphe terminals is necessary and sufficient to determine consummatory response, while select enkephalin-containing nucleus accumbens ensembles are engaged prior to reward consumption, suggesting that local enkephalin release is the source of the endogenous MOPR ligand. Selective modulation of nucleus accumbens enkephalin neurons and CRISPR-Cas9-mediated disruption of enkephalin substantiate this finding. These results isolate a fundamental endogenous opioid circuit for state-dependent consumptive behaviour and suggest alternative mechanisms for opiate modulation of reward.


Assuntos
Analgésicos Opioides/farmacologia , Núcleo Accumbens/fisiologia , Receptores Opioides mu/fisiologia , Recompensa , Animais , Encefalinas , Feminino , Masculino , Camundongos , Camundongos Knockout
2.
Nature ; 543(7643): 103-107, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28225752

RESUMO

The prefrontal cortex is a critical neuroanatomical hub for controlling motivated behaviours across mammalian species. In addition to intra-cortical connectivity, prefrontal projection neurons innervate subcortical structures that contribute to reward-seeking behaviours, such as the ventral striatum and midline thalamus. While connectivity among these structures contributes to appetitive behaviours, how projection-specific prefrontal neurons encode reward-relevant information to guide reward seeking is unknown. Here we use in vivo two-photon calcium imaging to monitor the activity of dorsomedial prefrontal neurons in mice during an appetitive Pavlovian conditioning task. At the population level, these neurons display diverse activity patterns during the presentation of reward-predictive cues. However, recordings from prefrontal neurons with resolved projection targets reveal that individual corticostriatal neurons show response tuning to reward-predictive cues, such that excitatory cue responses are amplified across learning. By contrast, corticothalamic neurons gradually develop new, primarily inhibitory responses to reward-predictive cues across learning. Furthermore, bidirectional optogenetic manipulation of these neurons reveals that stimulation of corticostriatal neurons promotes conditioned reward-seeking behaviour after learning, while activity in corticothalamic neurons suppresses both the acquisition and expression of conditioned reward seeking. These data show how prefrontal circuitry can dynamically control reward-seeking behaviour through the opposing activities of projection-specific cell populations.


Assuntos
Comportamento Apetitivo/fisiologia , Sinais (Psicologia) , Vias Neurais , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Recompensa , Animais , Cálcio/análise , Condicionamento Clássico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular , Plasticidade Neuronal , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Tálamo/citologia , Tálamo/fisiologia
3.
J Neurosci ; 41(9): 1928-1940, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33441435

RESUMO

Choice behavior is characterized by temporal discounting, i.e., preference for immediate rewards given a choice between immediate and delayed rewards. Agouti-related peptide (AgRP)-expressing neurons located in the arcuate nucleus of the hypothalamus (ARC) regulate food intake and energy homeostasis, yet whether AgRP neurons influence choice behavior and temporal discounting is unknown. Here, we demonstrate that motivational state potently modulates temporal discounting. Hungry mice (both male and female) strongly preferred immediate food rewards, yet sated mice were largely indifferent to reward delay. More importantly, selective optogenetic activation of AgRP-expressing neurons or their axon terminals within the posterior bed nucleus of stria terminalis (BNST) produced temporal discounting in sated mice. Furthermore, activation of neuropeptide Y (NPY) type 1 receptors (Y1Rs) within the BNST is sufficient to produce temporal discounting. These results demonstrate a profound influence of hypothalamic signaling on temporal discounting for food rewards and reveal a novel circuit that determine choice behavior.SIGNIFICANCE STATEMENT Temporal discounting is a universal phenomenon found in many species, yet the underlying neurocircuit mechanisms are still poorly understood. Our results revealed a novel neural pathway from agouti-related peptide (AgRP) neurons in the hypothalamus to the bed nucleus of stria terminalis (BNST) that regulates temporal discounting in decision-making.


Assuntos
Tonsila do Cerebelo/fisiologia , Desvalorização pelo Atraso/fisiologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Feminino , Masculino , Camundongos
4.
Eur J Neurosci ; 56(5): 4529-4545, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35799410

RESUMO

Unilateral dopamine (DA) depletion produces ipsiversive turning behaviour, and the injection of DA receptor agonists can produce contraversive turning, but the underlying mechanisms remain unclear. We conducted in vivo recording and pharmacological and optogenetic manipulations to study the role of DA and striatal output in turning behaviour. We used a video-based tracking programme while recording single unit activity in both putative medium spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs) in the dorsal striatum bilaterally. Our results suggest that unilateral DA depletion reduced striatal output from the depleted side, resulting in asymmetric striatal output. Depletion systematically altered activity in both MSNs and FSIs, especially in neurons that increased firing during turning movements. Like D1 agonist SKF 38393, optogenetic stimulation in the depleted striatum increased striatal output and reversed biassed turning. These results suggest that relative striatal outputs from the two cerebral hemispheres determine the direction of turning: Mice turn away from the side of higher striatal output and towards the side of the lower striatal output.


Assuntos
Corpo Estriado , Dopamina , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Corpo Estriado/metabolismo , Agonistas de Dopamina , Interneurônios/fisiologia , Camundongos , Neurônios/fisiologia , Receptores de Dopamina D1/metabolismo
5.
J Neurosci ; 40(11): 2282-2295, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32024781

RESUMO

Oxytocin (OT) is critical for the expression of social behavior across a wide array of species; however, the role of this system in the encoding of socially relevant information is not well understood. In the present study, we show that chemogenetic activation of OT neurons within the paraventricular nucleus of the hypothalamus (PVH) of male mice (OT-Ires-Cre) enhanced social investigation during a social choice test, while chemogenetic inhibition of these neurons abolished typical social preferences. These data suggest that activation of the OT system is necessary to direct behavior preferentially toward social stimuli. To determine whether the presence of a social stimulus is sufficient to induce activation of PVH-OT neurons, we performed the first definitive recording of OT neurons in awake mice using two-photon calcium imaging. These recordings demonstrate that social stimuli activate PVH-OT neurons and that these neurons differentially encode social and nonsocial stimuli, suggesting that PVH-OT neurons may act to convey social salience of environmental stimuli. Finally, an attenuation of social salience is associated with social disorders, such as autism. We therefore also examined possible OT system dysfunction in a mouse model of autism, Shank3b knock-out (KO) mice. Male Shank3b KO mice showed a marked reduction in PVH-OT neuron number and administration of an OT receptor agonist improved social deficits. Overall, these data suggest that the presence of a social stimulus induces activation of the PVH-OT neurons to promote adaptive social behavior responses.SIGNIFICANCE STATEMENT Although the oxytocin (OT) system is well known to regulate a diverse array of social behaviors, the mechanism in which OT acts to promote the appropriate social response is poorly understood. One hypothesis is that the presence of social conspecifics activates the OT system to generate an adaptive social response. Here, we selectively recorded from OT neurons in the paraventricular hypothalamic nucleus (PVH) to show that social stimulus exposure indeed induces activation of the OT system. We also show that activation of the OT system is necessary to promote social behavior and that mice with abnormal social behavior have reduced numbers of PVH-OT neurons. Finally, aberrant social behavior in these mice was rescued by administration of an OT receptor agonist.


Assuntos
Neurônios/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Comportamento Social , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Apetitivo/efeitos dos fármacos , Comportamento Apetitivo/fisiologia , Transtorno Autístico/fisiopatologia , Benzodiazepinas/farmacologia , Sinalização do Cálcio , Clozapina/farmacologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Genes Reporter , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Ocitocina/análise , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Técnicas de Patch-Clamp , Pirazóis/farmacologia , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/fisiologia , Vigília
6.
Proc Natl Acad Sci U S A ; 113(3): E358-67, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26733686

RESUMO

Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales.


Assuntos
Luz , Opsinas/metabolismo , Optogenética , Potenciais de Ação/efeitos da radiação , Animais , Comportamento Animal , Feminino , Células HEK293 , Humanos , Luciferases/metabolismo , Medições Luminescentes , Camundongos Endogâmicos C57BL , Movimento , Neurônios/metabolismo , Neurônios/efeitos da radiação , Ratos Sprague-Dawley , Rodopsina/metabolismo , Substância Negra/fisiologia , Substância Negra/efeitos da radiação , Sinapses/metabolismo , Sinapses/efeitos da radiação , Volvox/metabolismo , Volvox/efeitos da radiação
7.
J Neurosci ; 35(6): 2703-16, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673860

RESUMO

The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions.


Assuntos
Gânglios da Base/fisiologia , Comportamento Animal/fisiologia , Atividade Motora/fisiologia , Animais , Condicionamento Operante/fisiologia , Fenômenos Eletrofisiológicos , Movimentos da Cabeça/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Recompensa , Gravação em Vídeo , Ácido gama-Aminobutírico/fisiologia
8.
Eur J Neurosci ; 43(8): 1097-110, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27091436

RESUMO

The basal ganglia have long been implicated in action initiation. Using three-dimensional motion capture, we quantified the effects of optogenetic stimulation of the striatonigral (direct) pathway on movement kinematics. We generated transgenic mice with channelrhodopsin-2 expression in striatal neurons that express the D1-like dopamine receptor. With optic fibres placed in the sensorimotor striatum, an area known to contain movement velocity-related single units, photo-stimulation reliably produced movements that could be precisely quantified with our motion capture programme. A single light pulse was sufficient to elicit movements with short latencies (< 30 ms). Increasing stimulation frequency increased movement speed, with a highly linear relationship. These findings support the hypothesis that the sensorimotor striatum is part of a velocity controller that controls rate of change in body configurations.


Assuntos
Movimento , Substância Negra/fisiologia , Animais , Channelrhodopsins , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Substância Negra/citologia
9.
Mov Disord ; 30(5): 624-31, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25777796

RESUMO

Elucidating the neuronal mechanisms underlying movement disorders is a major challenge because of the intricacy of the relevant neural circuits, which are characterized by diverse cell types and complex connectivity. A major limitation of traditional techniques, such as electrical stimulation or lesions, is that individual elements of a neural circuit cannot be selectively manipulated. Moreover, available treatments are largely based on trial and error rather than a detailed understanding of the circuit mechanisms. Gaps in our knowledge of the circuit mechanisms for movement disorders, as well as mechanisms underlying known treatments such as deep brain stimulation, make it difficult to design new and improved treatment options. In this perspective, we discuss how optogenetics, which allows researchers to use light to manipulate neuronal activity, can contribute to the understanding and treatment of movement disorders. We outline the advantages and limitations of optogenetics and discuss examples of studies that have used this tool to clarify the role of the basal ganglia circuitry in movement.


Assuntos
Encéfalo/metabolismo , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Optogenética/métodos , Encéfalo/patologia , Humanos
10.
Eur J Neurosci ; 39(10): 1664-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24617747

RESUMO

The dopaminergic projections to the basal ganglia have long been implicated in reward-guided behavior and decision-making, yet little is known about the role of the posterior pedunculopontine nucleus (pPPN), a major source of excitatory input to the mesolimbic dopamine system. Here we studied the contributions of the pPPN to decision-making under risk, using excitoxic lesions and reversible inactivation in rats. Rats could choose between two options - a small but certain reward on one lever; or a large but uncertain reward on the other lever. The overall payoff associated with each choice is the same, but the reward variance (risk) associated with the risky choice is much higher. In Experiment 1, we showed that excitotoxic lesions of the pPPN before training did not affect acquisition of lever pressing. But whereas the controls strongly preferred the safe choice, the lesioned rats did not. In Experiment 2, we found that muscimol inactivation of the pPPN also produced similar effects, but reversibly. These results show that permanent lesions or reversible inactivation of the pPPN both abolish risk aversion in decision-making.


Assuntos
Comportamento de Escolha/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Risco , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Muscimol/farmacologia , Testes Neuropsicológicos , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Núcleo Tegmental Pedunculopontino/fisiopatologia , Ratos Long-Evans , Recompensa , Assunção de Riscos , Análise e Desempenho de Tarefas , Incerteza
11.
Eur J Neurosci ; 39(9): 1465-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24628921

RESUMO

Disorders implicating the basal ganglia are often characterized by postural deficits, but little is known about the role of the basal ganglia in posture control. Using wireless multi-electrode recording, we measured single unit activity from GABAergic and dopaminergic neurons in the substantia nigra as unrestrained mice stood on an elevated platform while introducing continuous postural disturbances in the roll plane. We found two major types of neurons - those activated by tilt to the left side of the body and suppressed by tilt to the right side, and others activated by tilt to the right side and suppressed by tilt to the left side. Contrary to the prevailing view that the basal ganglia output from the substantia nigra pars reticulata either inhibits or disinhibits downstream structures in an all or none fashion, we showed that it continuously sends anti-phase signals to their downstream targets. We also demonstrated for the first time that nigrostriatal dopaminergic transmission is modulated by postural disturbances.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Equilíbrio Postural/fisiologia , Substância Negra/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Curr Biol ; 34(2): R64-R67, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262362

RESUMO

The brain has long been known to control stress and reward through complex and interconnected circuitry. A new study now reveals a group of hypothalamic neurons that paradoxically mediate both reward and aversion.


Assuntos
Hormônio Liberador da Corticotropina , Neurociências , Recompensa , Afeto , Hormônio Adrenocorticotrópico
13.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585874

RESUMO

Objective: Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLS GLP-1R ) and their downstream projections on food intake and determine the relationship with feeding regulation. Methods: Using chemogenetic manipulations, we assessed how activation or inhibition of dLS GLP-1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLS GLP-1R neurons to the lateral hypothalamic area (LHA) in regulating food intake. Results: Chemogenetic inhibition of dLS GLP-1R neurons increases food intake. LHA is a major downstream target of dLS GLP-1R neurons. The dLS GLP-1R →LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLS GLP-1R →LHA projections modestly decreases food intake, optogenetic stimulation of the dLS GLP-1R →LHA projection terminals in the LHA rapidly suppressed feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLS GLP-1R →LHA GABA release. Conclusions: Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity. Highlights: Chemogenetic inhibition of dLS GLP-1R neurons boosts food intake in mice dLS GLP-1R neuron activation does not alter feeding, likely by collateral inhibition dLS GLP-1R neurons project to LHA and release GABA Activation of dLS GLP-1R →LHA axonal terminals suppresses food intake GLP-1R agonism enhances dLS GLP-1R →LHA GABA release via a presynaptic mechanism.

14.
Mol Metab ; 85: 101960, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763494

RESUMO

OBJECTIVE: Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLSGLP-1R) that project to the lateral hypothalamic area (LHA) on food intake and determine the relationship with feeding regulation. METHODS: Using chemogenetic manipulations, we assessed how activation or inhibition of dLSGLP-1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLSGLP-1R →LHA projections in regulating food intake. RESULTS: Chemogenetic inhibition of dLSGLP-1R neurons increases food intake. LHA is a major downstream target of dLSGLP-1R neurons. The dLSGLP-1R→LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLSGLP-1R→LHA projections modestly decreases food intake, optogenetic stimulation of the dLSGLP-1R→LHA projection terminals in the LHA rapidly suppresses feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLSGLP-1R →LHA GABA release. CONCLUSIONS: Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Região Hipotalâmica Lateral , Neurônios , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Masculino , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/fisiologia , Ingestão de Alimentos/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Comportamento Alimentar/fisiologia , Camundongos Endogâmicos C57BL
15.
Res Sq ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559032

RESUMO

Central nervous system (CNS) control of metabolism plays a pivotal role in maintaining energy homeostasis. Glucagon-like peptide-1 (GLP-1, encoded by Gcg), secreted by a distinct population of neurons located within the nucleus tractus solitarius (NTS), suppresses feeding through projections to multiple brain targets1-3. Although GLP-1 analogs are proven clinically effective in treating type 2 diabetes and obesity4, the mechanisms of GLP-1 action within the brain remain unclear. Here, we investigate the involvement of GLP-1 receptor (GLP-1R) mediated signaling in a descending circuit formed by GLP-1R neurons in the paraventricular hypothalamic nucleus (PVNGLP-1R) that project to dorsal vagal complex (DVC) neurons of the brain stem in mice. PVNGLP- 1R→DVC synapses release glutamate that is augmented by GLP-1 via a presynaptic mechanism. Chemogenetic activation of PVNGLP-1R→DVC neurons suppresses feeding. The PVNGLP-1R→DVC synaptic transmission is dynamically regulated by energy states. In a state of energy deficit, synaptic strength is weaker but is more profoundly augmented by GLP-1R signaling compared to an energy-replete state. In an obese state, the dynamic synaptic strength changes in the PVNGLP-1R→DVC descending circuit are disrupted. Blocking PVNGLP-1R→DVC synaptic release or ablation of GLP-1R in the presynaptic compartment increases food intake and causes obesity, elevated blood glucose, and impaired insulin sensitivity. These findings suggest that the state-dependent synaptic plasticity in this PVNGLP-1R→DVC descending circuit mediated by GLP-1R signaling is an essential regulator of energy homeostasis.

16.
J Neurosci ; 32(16): 5534-48, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22514315

RESUMO

The timing of actions is critical for adaptive behavior. In this study we measured neural activity in the substantia nigra as mice learned to change their action duration to earn food rewards. We observed dramatic changes in single unit activity during learning: both dopaminergic and GABAergic neurons changed their activity in relation to behavior to reflect the learned instrumental contingency and the action duration. We found the emergence of "action-on" neurons that increased firing for the duration of the lever press and mirror-image "action-off" neurons that paused at the same time. This pattern is especially common among GABAergic neurons. The activity of many neurons also reflected confidence about the just completed action and the prospect of reward. Being correlated with the relative duration of the completed action, their activity could predict the likelihood of reward collection. Compared with the GABAergic neurons, the activity of dopaminergic neurons was more commonly modulated by the discriminative stimulus signaling the start of each trial, suggesting that their phasic activity reflected sensory salience rather than any reward prediction error found in previous work. In short, these results suggest that (1) nigral activity is highly plastic and modified by the learning of the instrumental contingency; (2) GABAergic output from the substantia nigra can simultaneously inhibit and disinhibit downstream structures, while the dopaminergic output also provide bidirectional modulation of the corticostriatal circuits; (3) dopaminergic and GABAergic neurons show similar task-related activity, although DA neurons are more responsive to the trial start signal.


Assuntos
Potenciais de Ação/fisiologia , Comportamento de Escolha/fisiologia , Neurônios Dopaminérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Substância Negra/citologia , Percepção do Tempo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Condicionamento Operante/fisiologia , Eletrodos , Privação de Alimentos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Curva ROC , Tempo de Reação/fisiologia , Recompensa , Estatísticas não Paramétricas , Fatores de Tempo
17.
Trends Neurosci ; 46(9): 738-749, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353461

RESUMO

The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.


Assuntos
Encéfalo , Região Hipotalâmica Lateral , Humanos , Região Hipotalâmica Lateral/metabolismo , Encéfalo/fisiologia , Homeostase
18.
Mol Metab ; 71: 101702, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898526

RESUMO

OBJECTIVE: Maternal overnutrition is associated with adverse outcomes in offspring, including increased risk for obesity and diabetes. Here, we aim to test the effects of maternal obesity on lateral hypothalamic feeding circuit function and determine the relationship with body weight regulation. METHODS: Using a mouse model of maternal obesity, we assessed how perinatal overnutrition affected food intake and body weight regulation in adult offspring. We then used channelrhodopsin-assisted circuit mapping and electrophysiological recordings to assess the synaptic connectivity within an extended amygdala-lateral hypothalamic pathway. RESULTS: We show that maternal overnutrition during gestation and throughout lactation produces offspring that are heavier than controls prior to weaning. When weaned onto chow, the body weights of over-nourished offspring normalize to control levels. However, when presented with highly palatable food as adults, both male and female maternally over-nourished offspring are highly susceptible to diet-induced obesity. This is associated with altered synaptic strength in an extended amygdala-lateral hypothalamic pathway, which is predicted by developmental growth rate. Additionally, lateral hypothalamic neurons receiving synaptic input from the bed nucleus of the stria terminalis have enhanced excitatory input following maternal overnutrition which is predicted by early life growth rate. CONCLUSIONS: Together, these results demonstrate one way in which maternal obesity rewires hypothalamic feeding circuits to predispose offspring to metabolic dysfunction.


Assuntos
Região Hipotalâmica Lateral , Obesidade Materna , Feminino , Masculino , Humanos , Gravidez , Região Hipotalâmica Lateral/metabolismo , Obesidade/metabolismo , Peso Corporal , Dieta
19.
J Neurophysiol ; 108(4): 1211-22, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22539827

RESUMO

The prefrontal cortex (PFC) has been implicated in the maintenance of task-relevant information during goal-directed behavior. Using a combination of lesions, local inactivation, and optogenetics, we investigated the functional role of the medial prefrontal cortex (mPFC) in mice with a novel operant delayed alternation task. Task difficulty was manipulated by changing the duration of the delay between two sequential actions. In experiment 1, we showed that excitotoxic lesions of the mPFC impaired acquisition of delayed alternation with long delays (16 s), whereas lesions of the dorsal hippocampus and ventral striatum, areas connected with the PFC, did not produce any deficits. Lesions of dorsal hippocampus, however, significantly impaired reversal learning when the rule was changed from alternation to repetition. In experiment 2, we showed that local infusions of muscimol (an agonist of the GABA(A) receptor) into mPFC impaired performance even when the animal was well trained, suggesting that the mPFC is critical not only for acquisition but also for successful performance. In experiment 3, to examine the mechanisms underlying the role of GABAergic inhibition, we used Cre-inducible Channelrhodopsin-2 to activate parvalbumin (PV)-expressing GABAergic interneurons in the mPFC of PV-Cre transgenic mice as they performed the task. Using whole cell patch-clamp recording, we demonstrated that activation of PV-expressing interneurons in vitro with blue light in brain slices reliably produced spiking and inhibited nearby pyramidal projection neurons. With similar stimulation parameters, in vivo stimulation significantly impaired delayed alternation performance. Together these results demonstrate a critical role for the mPFC in the acquisition and performance of the delayed alternation task.


Assuntos
Condicionamento Operante/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Animais , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Neuron ; 109(23): 3823-3837.e6, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624220

RESUMO

The lateral hypothalamic area (LHA) regulates feeding- and reward-related behavior, but because of its molecular and anatomical heterogeneity, the functions of defined neuronal populations are largely unclear. Glutamatergic neurons within the LHA (LHAVglut2) negatively regulate feeding and appetitive behavior. However, this population comprises transcriptionally distinct and functionally diverse neurons that project to diverse brain regions, including the lateral habenula (LHb) and ventral tegmental area (VTA). To resolve the function of distinct LHAVglut2 populations, we systematically compared projections to the LHb and VTA using viral tracing, single-cell sequencing, electrophysiology, and in vivo calcium imaging. LHAVglut2 neurons projecting to the LHb or VTA are anatomically, transcriptionally, electrophysiologically, and functionally distinct. While both populations encode appetitive and aversive stimuli, LHb projecting neurons are especially sensitive to satiety state and feeding hormones. These data illuminate the functional heterogeneity of LHAVglut2 neurons, suggesting that reward and aversion are differentially processed in divergent efferent pathways.


Assuntos
Habenula , Região Hipotalâmica Lateral , Ácido Glutâmico/metabolismo , Habenula/fisiologia , Região Hipotalâmica Lateral/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA