Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neuroinflammation ; 18(1): 124, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082772

RESUMO

BACKGROUND: Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by brain accumulation of aggregated amyloid-beta (Aß) and alpha-synuclein (αSYN), respectively. In order to develop effective therapies, it is crucial to understand how the Aß/αSYN aggregates can be cleared. Compelling data indicate that neuroinflammatory cells, including astrocytes and microglia, play a central role in the pathogenesis of AD and PD. However, how the interplay between the two cell types affects their clearing capacity and consequently the disease progression remains unclear. METHODS: The aim of the present study was to investigate in which way glial crosstalk influences αSYN and Aß pathology, focusing on accumulation and degradation. For this purpose, human-induced pluripotent cell (hiPSC)-derived astrocytes and microglia were exposed to sonicated fibrils of αSYN or Aß and analyzed over time. The capacity of the two cell types to clear extracellular and intracellular protein aggregates when either cultured separately or in co-culture was studied using immunocytochemistry and ELISA. Moreover, the capacity of cells to interact with and process protein aggregates was tracked using time-lapse microscopy and a customized "close-culture" chamber, in which the apical surfaces of astrocyte and microglia monocultures were separated by a <1 mm space. RESULTS: Our data show that intracellular deposits of αSYN and Aß are significantly reduced in co-cultures of astrocytes and microglia, compared to monocultures of either cell type. Analysis of conditioned medium and imaging data from the "close-culture" chamber experiments indicate that astrocytes secrete a high proportion of their internalized protein aggregates, while microglia do not. Moreover, co-cultured astrocytes and microglia are in constant contact with each other via tunneling nanotubes and other membrane structures. Notably, our live cell imaging data demonstrate that microglia, when attached to the cell membrane of an astrocyte, can attract and clear intracellular protein deposits from the astrocyte. CONCLUSIONS: Taken together, our data demonstrate the importance of astrocyte and microglia interactions in Aß/αSYN clearance, highlighting the relevance of glial cellular crosstalk in the progression of AD- and PD-related brain pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Microglia/metabolismo , Microglia/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Estruturas da Membrana Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Humanos , Células-Tronco Pluripotentes Induzidas , Microscopia Confocal , Nanotubos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteólise
2.
J Neuroinflammation ; 17(1): 119, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299492

RESUMO

BACKGROUND: Many lines of evidence suggest that accumulation of aggregated alpha-synuclein (αSYN) in the Parkinson's disease (PD) brain causes infiltration of T cells. However, in which ways the stationary brain cells interact with the T cells remain elusive. Here, we identify astrocytes as potential antigen-presenting cells capable of activating T cells in the PD brain. Astrocytes are a major component of the nervous system, and accumulating data indicate that astrocytes can play a central role during PD progression. METHODS: To investigate the role of astrocytes in antigen presentation and T-cell activation in the PD brain, we analyzed post mortem brain tissue from PD patients and controls. Moreover, we studied the capacity of cultured human astrocytes and adult human microglia to act as professional antigen-presenting cells following exposure to preformed αSYN fibrils. RESULTS: Our analysis of post mortem brain tissue demonstrated that PD patients express high levels of MHC-II, which correlated with the load of pathological, phosphorylated αSYN. Interestingly, a very high proportion of the MHC-II co-localized with astrocytic markers. Importantly, we found both perivascular and infiltrated CD4+ T cells to be surrounded by MHC-II expressing astrocytes, confirming an astrocyte T cell cross-talk in the PD brain. Moreover, we showed that αSYN accumulation in cultured human astrocytes triggered surface expression of co-stimulatory molecules critical for T-cell activation, while cultured human microglia displayed very poor antigen presentation capacity. Notably, intercellular transfer of αSYN/MHC-II deposits occurred between astrocytes via tunneling nanotubes, indicating spreading of inflammation in addition to toxic protein aggregates. CONCLUSIONS: In conclusion, our data from histology and cell culture studies suggest an important role for astrocytes in antigen presentation and T-cell activation in the PD brain, highlighting astrocytes as a promising therapeutic target in the context of chronic inflammation.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Astrócitos/imunologia , Astrócitos/patologia , Encéfalo/imunologia , Encéfalo/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Microglia/imunologia , Microglia/patologia , Pessoa de Meia-Idade , Doença de Parkinson/imunologia , Doença de Parkinson/patologia
3.
J Neurosci ; 37(49): 11835-11853, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29089438

RESUMO

Many lines of evidence suggest that the Parkinson's disease (PD)-related protein α-synuclein (α-SYN) can propagate from cell to cell in a prion-like manner. However, the cellular mechanisms behind the spreading remain elusive. Here, we show that human astrocytes derived from embryonic stem cells actively transfer aggregated α-SYN to nearby astrocytes via direct contact and tunneling nanotubes (TNTs). Failure in the astrocytes' lysosomal digestion of excess α-SYN oligomers results in α-SYN deposits in the trans-Golgi network followed by endoplasmic reticulum swelling and mitochondrial disturbances. The stressed astrocytes respond by conspicuously sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes, which in return deliver mitochondria, indicating a TNT-mediated rescue mechanism. Using a pharmacological approach to inhibit TNT formation, we abolished the transfer of both α-SYN and mitochondria. Together, our results highlight the role of astrocytes in α-SYN cell-to-cell transfer, identifying possible pathophysiological events in the PD brain that could be of therapeutic relevance.SIGNIFICANCE STATEMENT Astrocytes are the major cell type in the brain, yet their role in Parkinson's disease progression remains elusive. Here, we show that human astrocytes actively transfer aggregated α-synuclein (α-SYN) to healthy astrocytes via direct contact and tunneling nanotubes (TNTs), rather than degrade it. The astrocytes engulf large amounts of oligomeric α-SYN that are subsequently stored in the trans-Golgi network region. The accumulation of α-SYN in the astrocytes affects their lysosomal machinery and induces mitochondrial damage. The stressed astrocytes respond by sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes. Our findings highlight an unexpected role of astrocytes in the propagation of α-SYN pathology via TNTs, revealing astrocytes as a potential target for therapeutic intervention.


Assuntos
Astrócitos/química , Astrócitos/metabolismo , Nanotubos , alfa-Sinucleína/análise , alfa-Sinucleína/metabolismo , Astrócitos/ultraestrutura , Comunicação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/ultraestrutura , Humanos , alfa-Sinucleína/ultraestrutura
4.
J Neuroinflammation ; 14(1): 241, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29228971

RESUMO

BACKGROUND: Due to its neurotoxic properties, oligomeric alpha-synuclein (α-syn) has been suggested as an attractive target for passive immunization against Parkinson's disease (PD). In mouse models of PD, antibody treatment has been shown to lower the levels of pathogenic α-syn species, including oligomers, although the mechanisms of action remain unknown. We have previously shown that astrocytes rapidly engulf α-syn oligomers that are intracellularly stored, rather than degraded, resulting in impaired mitochondria. METHODS: The aim of the present study was to investigate if the accumulation of α-syn in astrocytes can be affected by α-syn oligomer-selective antibodies. Co-cultures of astrocytes, neurons, and oligodendrocytes were derived from embryonic mouse cortex and exposed to α-syn oligomers or oligomers pre-incubated with oligomer-selective antibodies. RESULTS: In the presence of antibodies, the astrocytes displayed an increased clearance of the exogenously added α-syn, and consequently, the α-syn accumulation in the culture was markedly reduced. Moreover, the addition of antibodies rescued the astrocytes from the oligomer-induced mitochondrial impairment. CONCLUSIONS: Our results demonstrate that oligomer-selective antibodies can prevent α-syn accumulation and mitochondrial dysfunction in cultured astrocytes.


Assuntos
Anticorpos Monoclonais/farmacologia , Astrócitos/metabolismo , Mitocôndrias/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , Animais , Corpos de Inclusão , Espaço Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Doença de Parkinson
5.
Acta Neuropathol Commun ; 11(1): 97, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330529

RESUMO

Tau deposits in astrocytes are frequently found in Alzheimer's disease (AD) and other tauopathies. Since astrocytes do not express tau, the inclusions have been suggested to be of neuronal origin. However, the mechanisms behind their appearance and their relevance for disease progression remain unknown. Here we demonstrate, using a battery of experimental techniques that human astrocytes serve as an intermediator, promoting cell-to-cell spreading of pathological tau. Human astrocytes engulf and process, but fail to fully degrade dead neurons with tau pathology, as well as synthetic tau fibrils and tau aggregates isolated from AD brain tissue. Instead, the pathogenic tau is spread to nearby cells via secretion and tunneling nanotube mediated transfer. By performing co-culture experiments we could show that tau-containing astrocytes induce tau pathology in healthy human neurons directly. Furthermore, our results from a FRET based seeding assay, demonstrated that the tau proteoforms secreted by astrocytes have an exceptional seeding capacity, compared to the original tau species engulfed by the cells. Taken together, our study establishes a central role for astrocytes in mediating tau pathology, which could be of relevance for identifying novel treatment targets for AD and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Astrócitos/metabolismo , Tauopatias/patologia , Doença de Alzheimer/patologia , Neurônios/metabolismo , Encéfalo/patologia
6.
Biomed Pharmacother ; 131: 110788, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152946

RESUMO

Growing evidence emphasizes insufficient clearance of pathological alpha-synuclein (αSYN) aggregates in the progression of Parkinson's disease (PD). Consequently, cellular degradation pathways represent a potential therapeutic target. Prolyl oligopeptidase (PREP) is highly expressed in the brain and has been suggested to increase αSYN aggregation and negatively regulate the autophagy pathway. Inhibition of PREP with a small molecule inhibitor, KYP-2407, stimulates autophagy and reduces the oligomeric species of αSYN aggregates in PD mouse models. However, whether PREP inhibition has any effects on intracellular αSYN fibrils has not been studied before. In this study, the effect of KYP2407 on αSYN preformed fibrils (PFFs) was tested in SH-SY5Y cells and human astrocytes. Immunostaining analysis revealed that both cell types accumulated αSYN PFFs intracellularly but KYP-2047 decreased intracellular αSYN deposits only in SH-SY5Y cells, as astrocytes did not show any PREP activity. Western blot analysis confirmed the reduction of high molecular weight αSYN species in SH-SY5Y cell lysates, and secretion of αSYN from SH-SY5Y cells also decreased in the presence of KYP-2407. Accumulation of αSYN inside the SH-SY5Y cells resulted in an increase of the auto-lysosomal proteins p62 and LC3BII, as well as calpain 1 and 2, which have been shown to be associated with PD pathology. Notably, treatment with KYP-2407 significantly reduced p62 and LC3BII levels, indicating an increased autophagic flux, and calpain 1 and 2 levels returned to normal in the presence of KYP-2407. Our findings indicate that PREP inhibition can potentially be used as therapy to reduce the insoluble intracellular αSYN aggregates.


Assuntos
Neurônios/efeitos dos fármacos , Prolina/análogos & derivados , Prolil Oligopeptidases/antagonistas & inibidores , alfa-Sinucleína/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Progressão da Doença , Humanos , Neurônios/patologia , Doença de Parkinson/fisiopatologia , Prolina/farmacologia , Inibidores de Serina Proteinase/farmacologia
7.
Int Immunopharmacol ; 83: 106381, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32179243

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels having many functions including inflammation control, as part of the cholinergic anti-inflammatory pathway. Genome wide association studies implicated RIC3, a chaperone of nAChRs, in multiple sclerosis (MS), a neuroinflammatory disease. To understand the involvement of RIC3 in inflammatory diseases we examined its expression, regulation, and function in activated immune cells. Our results show that immune activation leads to dynamic changes in RIC3 expression, in a mouse model of MS and in human lymphocytes and macrophages. We also show similarities in the expression dynamics of RIC3 and CHRNA7, encoding for the α7 nAChR subunit. Homomeric α7 nAChRs were shown to mediate the anti-inflammatory effects of cholinergic agonists. Thus, similarity in expression dynamics between RIC3 and CHRNA7 is suggestive of functional concordance. Indeed, siRNA mediated silencing of RIC3 in a mouse macrophage cell line eliminates the anti-inflammatory effects of cholinergic agonists. Furthermore, we show increased average expression of RIC3 and CHRNA7 in lymphocytes from MS patients, and a strong correlation between expression levels of these two genes in MS patients but not in healthy donors. Together, our results are consistent with a role for RIC3 and for the mechanisms regulating its expression in inflammatory processes and in neuroinflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos/imunologia , Macrófagos/imunologia , Esclerose Múltipla/metabolismo , Inflamação Neurogênica/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Anti-Inflamatórios , Células Cultivadas , Colinérgicos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
8.
Front Mol Neurosci ; 10: 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28179877

RESUMO

Characterization of orphan transporters is of importance due to their involvement in cellular homeostasis but also in pharmacokinetics and pharmacodynamics. The tissue and cellular localization, as well as function, is still unknown for many of the solute carriers belonging to the major facilitator superfamily (MFS) Pfam clan. Here, we have characterized two putative novel transporters MFSD14A (HIAT1) and MFSD14B (HIATL1) in the mouse central nervous system and found protein staining throughout the adult mouse brain. Both transporters localized to neurons and MFSD14A co-localized with the Golgi marker Giantin in primary embryonic cortex cultures, while MFSD14B staining co-localized with an endoplasmic retention marker, KDEL. Based on phylogenetic clustering analyses, we predict both to have organic substrate profiles, and possible involvement in energy homeostasis. Therefore, we monitored gene regulation changes in mouse embryonic primary cultures after amino acid starvations and found both transporters to be upregulated after 3 h of starvation. Interestingly, in mice subjected to 24 h of food starvation, both transporters were downregulated in the hypothalamus, while Mfsd14a was also downregulated in the brainstem. In addition, in mice fed a high fat diet (HFD), upregulation of both transporters was seen in the striatum. Both MFSD14A and MFSD14B were intracellular neuronal membrane-bound proteins, expressed in the Golgi and Endoplasmic reticulum, affected by both starvation and HFD to varying degree in the mouse brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA