RESUMO
Harmonium is a vacuum ultraviolet (VUV) photon source built within the Lausanne Centre for Ultrafast Science (LACUS). Utilising high harmonic generation, photons from 20-110 eV are available to conduct steady-state or ultrafast photoelectron and photoion spectroscopies (PES and PIS). A pulse preserving monochromator provides either high energy resolution (70 meV) or high temporal resolution (40 fs). Three endstations have been commissioned for: a) PES of liquids; b) angular resolved PES (ARPES) of solids and; c) coincidence PES and PIS of gas phase molecules or clusters. The source has several key advantages: high repetition rate (up to 15 kHz) and high photon flux (1011 photons per second at 38 eV). The capabilities of the facility complement the Swiss ultrafast and X-ray community (SwissFEL, SLS, NCCR MUST, etc.) helping to maintain Switzerland's leading role in ultrafast science in the world.
RESUMO
The manipulation of the electronic properties of solids by light is an exciting goal, which requires knowledge of the electronic structure with energy, momentum and temporal resolution. Time- and angle-resolved photoemission spectroscopy (tr-ARPES) is the most direct probe of the effects of an optical excitation on the band structure of a material. In particular, tr-ARPES in the extreme ultraviolet (VUV) range gives access to the ultrafast dynamics over the entire Brillouin zone. VUV tr-ARPES experiments can now be performed at the ASTRA (ARPES Spectrometer for Time-Resolved Applications) end station of Harmonium, at LACUS. Its capabilities are illustrated by measurements of the ultrafast electronic response of ZrSiTe, a novel topological semimetal characterized by linearly dispersing states located at the Brillouin zone boundary.
RESUMO
Two limiting factors for a new technology of graphene-based electronic devices are the difficulty of growing large areas of defect-free material and the integration of graphene with an atomically flat and insulating substrate material. Chemical vapor deposition (CVD) on metal surfaces, in particular on copper, may offer a solution to the first problem, while hexagonal boron nitride (h-BN) has been identified as an ideal insulating substrate material. The bottom-up growth of graphene/h-BN stacks on copper surfaces appears therefore as a promising route for future device fabrication. As an important step, we demonstrate the consecutive growth of well-aligned graphene on h-BN, both as single layers, by low-pressure CVD on Cu(111) in an ultrahigh vacuum environment. The resulting films show a largely predominant orientation, defined by the substrate, where the graphene lattice aligns parallel to the h-BN lattice, while each layer maintains its own lattice constant. The lattice mismatch of 1.6% between h-BN and graphene leads to a moiré pattern with a periodicity of about 9 nm, as observed with scanning tunneling microscopy. Accordingly, angle-resolved photoemission data reveal two slightly different Brillouin zones for electronic states localized in graphene and in h-BN, reflecting the vertical decoupling of the two layers. The graphene appears n-doped and shows no gap opening at the K[overline] point of the two-dimensional Brillouin zone.
RESUMO
Single atoms, and in particular the least reactive noble gases, are difficult to immobilize at room temperature. Ion implantation into a crystal lattice has this capability, but the randomness of the involved processes does not permit much control over their distribution within the solid. Here we demonstrate that the boron nitride nanomesh, a corrugated single layer of hexagonal boron nitride (h-BN) with a 3.2 nm honeycomb superstructure formed on a Rh(111) surface, can trap individual argon atoms at distinct subsurface sites at room temperature. A kinetic energy window for implantation is identified where the argon ions can penetrate the h-BN layer but not enter the Rh lattice. Scanning tunneling microscopy and photoemission data show the presence of argon atoms at two distinct sites within the nanomesh unit cell, confirmed also by density functional theory calculations. The single atom implants are stable in air. Annealing of implanted structures to 900 K induces the formation of highly regular holes of 2 nm diameter in the h-BN layer with adjacent flakes of the same size found on top of the layer. We explain this "can-opener" effect by the presence of a vacancy defect, generated during the penetration of the Ar ion through the h-BN lattice, and propagating along the rim of a nanomesh pore where the h-BN lattice is highly bent. The reported effects are also observed in graphene on ruthenium and for neon atoms.
Assuntos
Argônio/química , Compostos de Boro/química , Grafite/química , Cinética , Ródio/química , Rutênio/química , Propriedades de Superfície , TemperaturaRESUMO
Photoelectron spectroscopy (PES) is a versatile tool, which provides insight into electronic structure and dynamics in condensed matter, surfaces, interfaces and molecules. The history of PES is briefly outlined and illustrated by current developments in the field of time-resolved PES. Our group's research is mostly aimed at studying ultrafast processes and associated lifetimes related to electronic excitation at solid surfaces.
RESUMO
On the path to functional graphene electronics, suitable templates for chemical vapor deposition (CVD) growth of high-mobility graphene are of great interest. Among various substrates, hexagonal boron nitride (h-BN) has established itself as one of the most promising candidates. The nanomesh, a h-BN monolayer grown on the Rh(111) surface where the lattice mismatch of h-BN and rhodium leads to a characteristic corrugation of h-BN, offers an interesting graphene/h-BN interface, different from flat graphene/h-BN systems hitherto studied. In this report, we describe a two-step CVD process for graphene formation on h-BN/Rh(111) at millibar pressures and describe the influence of the surface texture on the CVD process. During a first exposure to the 3-pentanone precursor, carbon atoms are incorporated in the rhodium subsurface, which leads to decoupling of the h-BN layer from the Rh(111) surface. This is reflected in the electronic band structure, where the corrugation-induced splitting of the h-BN bands vanishes. In a second 3-pentanone exposure, a graphene layer is formed on the flat h-BN layer, evidenced by the appearance of the characteristic linear dispersion of its π band. The graphene layer grows incommensurate and highly oriented. The formation of graphene/h-BN on rhodium opens the door to scalable production of well-aligned heterostacks since single-crystalline thin-film Rh substrates are available in large dimensions.