RESUMO
The OpenProt proteogenomic resource (https://www.openprot.org/) provides users with a complete and freely accessible set of non-canonical or alternative open reading frames (AltORFs) within the transcriptome of various species, as well as functional annotations of the corresponding protein sequences not found in standard databases. Enhancements in this update are largely the result of user feedback and include the prediction of structure, subcellular localization, and intrinsic disorder, using cutting-edge algorithms based on machine learning techniques. The mass spectrometry pipeline now integrates a machine learning-based peptide rescoring method to improve peptide identification. We continue to help users explore this cryptic proteome by providing OpenCustomDB, a tool that enables users to build their own customized protein databases, and OpenVar, a genomic annotator including genetic variants within AltORFs and protein sequences. A new interface improves the visualization of all functional annotations, including a spectral viewer and the prediction of multicoding genes. All data on OpenProt are freely available and downloadable. Overall, OpenProt continues to establish itself as an important resource for the exploration and study of new proteins.
Assuntos
Bases de Dados de Proteínas , Peptídeos , Proteômica , Sequência de Aminoácidos , Genômica , Internet , Peptídeos/genética , Proteoma/genética , Proteômica/métodos , HumanosRESUMO
BACKGROUND: Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS: We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS: Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.
Assuntos
Genoma Mitocondrial , NADH Desidrogenase , Humanos , DNA Mitocondrial/genética , Células HeLa , Mitocôndrias/genética , Fases de Leitura Aberta , Peptídeos , NADH Desidrogenase/genéticaRESUMO
Proteomic diversity in biological samples can be characterized by mass spectrometry (MS)-based proteomics using customized protein databases generated from sets of transcripts previously detected by RNA-seq. This diversity has only been increased by the recent discovery that many translated alternative open reading frames rest unannotated at unsuspected locations of mRNAs and ncRNAs. These novel protein products, termed alternative proteins, have been left out of all previous custom database generation tools. Consequently, genetic variations that impact alternative open reading frames and variant peptides from their translated proteins are not detectable with current computational workflows. To fill this gap, we present OpenCustomDB, a bioinformatics tool that uses sample-specific RNaseq data to identify genomic variants in canonical and alternative open reading frames, allowing for more than one coding region per transcript. In a test reanalysis of a cohort of 16 patients with acute myeloid leukemia, 5666 peptides from alternative proteins were detected, including 201 variant peptides. We also observed that a significant fraction of peptide-spectrum matches previously assigned to peptides from canonical proteins got better scores when reassigned to peptides from alternative proteins. Custom protein libraries that include sample-specific sequence variations of all possible open reading frames are promising contributions to the development of proteomics and precision medicine. The raw and processed proteomics data presented in this study can be found in PRIDE repository with accession number PXD029240.
Assuntos
Proteínas , Proteômica , Humanos , Proteômica/métodos , Bases de Dados de Proteínas , Fases de Leitura Aberta , Proteínas/genética , Peptídeos/genética , Peptídeos/análiseRESUMO
Novel functional coding sequences (altORFs) are camouflaged within annotated ones (CDS) in a different reading frame. We show here that an altORF is nested in the FUS CDS, encoding a conserved 170 amino acid protein, altFUS. AltFUS is endogenously expressed in human tissues, notably in the motor cortex and motor neurons. Over-expression of wild-type FUS and/or amyotrophic lateral sclerosis-linked FUS mutants is known to trigger toxic mechanisms in different models. These include inhibition of autophagy, loss of mitochondrial potential and accumulation of cytoplasmic aggregates. We find that altFUS, not FUS, is responsible for the inhibition of autophagy, and pivotal in mitochondrial potential loss and accumulation of cytoplasmic aggregates. Suppression of altFUS expression in a Drosophila model of FUS-related toxicity protects against neurodegeneration. Some mutations found in ALS patients are overlooked because of their synonymous effect on the FUS protein. Yet, we show they exert a deleterious effect causing missense mutations in the overlapping altFUS protein. These findings demonstrate that FUS is a bicistronic gene and suggests that both proteins, FUS and altFUS, cooperate in toxic mechanisms.
Assuntos
Esclerose Lateral Amiotrófica , Proteína FUS de Ligação a RNA , Esclerose Lateral Amiotrófica/genética , Animais , Drosophila/genética , Humanos , Neurônios Motores , Mutação , Proteína FUS de Ligação a RNA/genéticaRESUMO
OpenProt (www.openprot.org) is the first proteogenomic resource supporting a polycistronic annotation model for eukaryotic genomes. It provides a deeper annotation of open reading frames (ORFs) while mining experimental data for supporting evidence using cutting-edge algorithms. This update presents the major improvements since the initial release of OpenProt. All species support recent NCBI RefSeq and Ensembl annotations, with changes in annotations being reported in OpenProt. Using the 131 ribosome profiling datasets re-analysed by OpenProt to date, non-AUG initiation starts are reported alongside a confidence score of the initiating codon. From the 177 mass spectrometry datasets re-analysed by OpenProt to date, the unicity of the detected peptides is controlled at each implementation. Furthermore, to guide the users, detectability statistics and protein relationships (isoforms) are now reported for each protein. Finally, to foster access to deeper ORF annotation independently of one's bioinformatics skills or computational resources, OpenProt now offers a data analysis platform. Users can submit their dataset for analysis and receive the results from the analysis by OpenProt. All data on OpenProt are freely available and downloadable for each species, the release-based format ensuring a continuous access to the data. Thus, OpenProt enables a more comprehensive annotation of eukaryotic genomes and fosters functional proteomic discoveries.
Assuntos
Bases de Dados de Proteínas , Eucariotos/genética , Genoma , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Espectrometria de Massas , Isoformas de Proteínas/genética , Proteogenômica , Ribossomos/metabolismo , Interface Usuário-ComputadorRESUMO
The blood-brain barrier (BBB) is a major obstacle to the development of effective therapeutics for central nervous system (CNS) disorders, including Alzheimer's disease (AD). This has been particularly true in the case of monoclonal antibody (mAbs) therapeutic candidates, due to their large size. To tackle this issue, we developed new nanoformulations, comprising bio-based Triozan polymers along with kinin B1 and B2 receptor (B1R and B2R) peptide agonist analogues, as potent BBB-permeabilizers to enhance brain delivery of a new anti-C1q mAb for AD (ANX005). The prepared B1R/B2R-TRIOZAN™ nanoparticles (NPs) displayed aqueous solubility, B1R/B2R binding capacity and uniform sizes (~130-165 nm). The relative biodistribution profiles of the mAb loaded into these NPs versus the naked mAb were assessed in vivo through two routes of administrations (intravenous (IV), intranasal (IN)) in the Tg-SwDI mouse model of AD. At 24 h post-administration, brain levels of the encapsulated mAb were significantly increased (up to 12-fold (IV) and 5-fold (IN), respectively) compared with free mAb in AD brain affected regions, entorhinal cortex and hippocampus of aged mice. Liver uptakes remained relatively low with similar values for the nanoformulations and free mAb. Our findings demonstrate the potential of B1R/B2R-TRIOZAN™ NPs for the targeted delivery of new CNS drugs, which could maximize their therapeutic effectiveness.
Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Distribuição Tecidual , Receptor B2 da Bradicinina/agonistas , Receptor B2 da Bradicinina/metabolismo , Receptor B1 da Bradicinina/agonistas , Receptor B1 da Bradicinina/metabolismo , Encéfalo/metabolismo , Modelos Animais de DoençasRESUMO
Recent functional and proteomic studies in eukaryotes (www.openprot.org) predict the translation of alternative open reading frames (AltORFs) in mature G-protein-coupled receptor (GPCR) mRNAs, including that of bradykinin B2 receptor (B2R). Our main objective was to determine the implication of a newly discovered AltORF resulting protein, termed AltB2R, in the known signaling properties of B2R using complementary methodological approaches. When ectopically expressed in HeLa cells, AltB2R presented predominant punctate cytoplasmic/perinuclear distribution and apparent cointeraction with B2R at plasma and endosomal/vesicular membranes. The presence of AltB2R increases intracellular [Ca2+] and ERK1/2-MAPK activation (via phosphorylation) following B2R stimulation. Moreover, HEK293A cells expressing mutant B2R lacking concomitant expression of AltB2R displayed significantly decreased maximal responses in agonist-stimulated Gαq-Gαi2/3-protein coupling, IP3 generation, and ERK1/2-MAPK activation as compared with wild-type controls. Conversely, there was no difference in cell-surface density as well as ligand-binding properties of B2R and in efficiencies of cognate agonists at promoting B2R internalization and ß-arrestin 2 recruitment. Importantly, both AltB2R and B2R proteins were overexpressed in prostate and breast cancers, compared with their normal counterparts suggesting new associative roles of AltB2R in these diseases. Our study shows that BDKRB2 is a dual-coding gene and identifies AltB2R as a novel positive modulator of some B2R signaling pathways. More broadly, it also supports a new, unexpected alternative proteome for GPCRs, which opens new frontiers in fields of GPCR biology, diseases, and drug discovery.
Assuntos
Processamento Alternativo/genética , Bradicinina/genética , Isoformas de Proteínas/genética , Receptor B2 da Bradicinina/genética , Bradicinina/metabolismo , Endocitose/genética , Endossomos/genética , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/genética , Fases de Leitura Aberta/genética , Proteômica , Transdução de Sinais/genéticaRESUMO
Technological advances promise unprecedented opportunities for whole exome sequencing and proteomic analyses of populations. Currently, data from genome and exome sequencing or proteomic studies are searched against reference genome annotations. This provides the foundation for research and clinical screening for genetic causes of pathologies. However, current genome annotations substantially underestimate the proteomic information encoded within a gene. Numerous studies have now demonstrated the expression and function of alternative (mainly small, sometimes overlapping) ORFs within mature gene transcripts. This has important consequences for the correlation of phenotypes and genotypes. Most alternative ORFs are not yet annotated because of a lack of evidence, and this absence from databases precludes their detection by standard proteomic methods, such as mass spectrometry. Here, we demonstrate how current approaches tend to overlook alternative ORFs, hindering the discovery of new genetic drivers and fundamental research. We discuss available tools and techniques to improve identification of proteins from alternative ORFs and finally suggest a novel annotation system to permit a more complete representation of the transcriptomic and proteomic information contained within a gene. Given the crucial challenge of distinguishing functional ORFs from random ones, the suggested pipeline emphasizes both experimental data and conservation signatures. The addition of alternative ORFs in databases will render identification less serendipitous and advance the pace of research and genomic knowledge. This review highlights the urgent medical and research need to incorporate alternative ORFs in current genome annotations and thus permit their inclusion in hypotheses and models, which relate phenotypes and genotypes.
Assuntos
Processamento Alternativo/genética , Éxons/genética , Estudos de Associação Genética , Íntrons/genética , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Genômica/métodos , Humanos , Modelos Genéticos , Proteômica/métodosRESUMO
The discovery of functional yet non-annotated open reading frames (ORFs) throughout the genome of several species presents an unprecedented challenge in current genome annotation. These novel ORFs are shorter than annotated ones and many can be found on the same RNA, in opposition to current assumptions in annotation methodologies. Whilst the literature lacks consensus, these novel ORFs are commonly referred to as small ORFs (sORFs) or alternative ORFs (alt-ORFs). Unannotated ORFs represent an overlooked layer of complexity in the coding potential of genomes and are transforming our current vision of the nature of coding genes. In this review, we outline what constitutes a sORF or an alt-ORF and emphasize differences between both nomenclatures. We then describe complementary large-scale methods to accurately discover novel ORFs as well as yield functional insights on the novel proteins they encode. While serendipitous discoveries highlighted the functional importance of some novel ORFs, omics methods facilitate and improve their characterization to better understand physiological and pathological pathways. Functional annotation of sORFs, alt-ORFs and their corresponding microproteins will likely help fundamental and clinical research.
Assuntos
Biologia Computacional , Genoma/genética , Fases de Leitura Aberta/genética , Proteínas/genética , Animais , Biologia Computacional/métodos , Genômica , Humanos , Anotação de Sequência Molecular/métodosRESUMO
Advances in proteomics and sequencing have highlighted many non-annotated open reading frames (ORFs) in eukaryotic genomes. Genome annotations, cornerstones of today's research, mostly rely on protein prior knowledge and on ab initio prediction algorithms. Such algorithms notably enforce an arbitrary criterion of one coding sequence (CDS) per transcript, leading to a substantial underestimation of the coding potential of eukaryotes. Here, we present OpenProt, the first database fully endorsing a polycistronic model of eukaryotic genomes to date. OpenProt contains all possible ORFs longer than 30 codons across 10 species, and cumulates supporting evidence such as protein conservation, translation and expression. OpenProt annotates all known proteins (RefProts), novel predicted isoforms (Isoforms) and novel predicted proteins from alternative ORFs (AltProts). It incorporates cutting-edge algorithms to evaluate protein orthology and re-interrogate publicly available ribosome profiling and mass spectrometry datasets, supporting the annotation of thousands of predicted ORFs. The constantly growing database currently cumulates evidence from 87 ribosome profiling and 114 mass spectrometry studies from several species, tissues and cell lines. All data is freely available and downloadable from a web platform (www.openprot.org) supporting a genome browser and advanced queries for each species. Thus, OpenProt enables a more comprehensive landscape of eukaryotic genomes' coding potential.
Assuntos
Eucariotos/genética , Genes/genética , Genoma , Fases de Leitura Aberta/genética , Proteoma/genética , Algoritmos , Animais , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Isoformas de Proteínas/genética , Proteômica/métodos , Ribossomos/metabolismo , Homologia de Sequência de AminoácidosRESUMO
Large scale proteomic strategies rely on database interrogation. Thus, only referenced proteins can be identified. Recently, Alternative Proteins (AltProts) translated from nonannotated Alternative Open reading frame (AltORFs) were discovered using customized databases. Because of their small size which confers them peptide-like physicochemical properties, they are more difficult to detect using standard proteomics strategies. In this study, we tested different preparation workflows for improving the identification of AltProts in NCH82 human glioma cell line. The highest number of identified AltProts was achieved with RIPA buffer or boiling water extraction followed by acetic acid precipitation.
Assuntos
Proteoma/análise , Extração em Fase Sólida/métodos , Fluxo de Trabalho , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Biomarcadores Tumorais/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Peso Molecular , Proteoma/química , Proteoma/isolamento & purificação , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em TandemRESUMO
Proteogenomics and ribosome profiling concurrently show that genes may code for both a large and one or more small proteins translated from annotated coding sequences (CDSs) and unannotated alternative open reading frames (named alternative ORFs or altORFs), respectively, but the stoichiometry between large and small proteins translated from a same gene is unknown. MIEF1, a gene recently identified as a dual-coding gene, harbors a CDS and a newly annotated and actively translated altORF located in the 5'UTR. Here, we use absolute quantification with stable isotope-labeled peptides and parallel reaction monitoring to determine levels of both proteins in two human cells lines and in human colon. We report that the main MIEF1 translational product is not the canonical 463 amino acid MiD51 protein but the small 70 amino acid alternative MiD51 protein (altMiD51). These results demonstrate the inadequacy of the single CDS concept and provide a strong argument for incorporating altORFs and small proteins in functional annotations.
Assuntos
Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fases de Leitura Aberta/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Cromatografia de Afinidade , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Colo/citologia , Éxons , Expressão Gênica , Células HeLa , Humanos , Anotação de Sequência Molecular , Peptídeos/metabolismo , Biossíntese de Proteínas , Modificação Traducional de Proteínas , Proteoma , Proteômica/métodos , Espectrometria de Massas em Tandem , Sequenciamento Completo do GenomaRESUMO
Tissue spatially-resolved proteomics was performed on 3 brain regions, leading to the characterization of 123 reference proteins. Moreover, 8 alternative proteins from alternative open reading frames (AltORF) were identified. Some proteins display specific post-translational modification profiles or truncation linked to the brain regions and their functions. Systems biology analysis performed on the proteome identified in each region allowed to associate sub-networks with the functional physiology of each brain region. Back correlation of the proteins identified by spatially-resolved proteomics at a given tissue localization with the MALDI MS imaging data, was then performed. As an example, mapping of the distribution of the matrix metallopeptidase 3-cleaved C-terminal fragment of α-synuclein (aa 95-140) identified its specific distribution along the hippocampal dentate gyrus. Taken together, we established the molecular physiome of 3 rat brain regions through reference and hidden proteome characterization.
Assuntos
Encéfalo/metabolismo , Proteoma , Animais , Masculino , Proteômica , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Short ORF-encoded peptides and small proteins in eukaryotes have been hiding in the shadow of large proteins for a long time. Recently, improved identifications in MS-based proteomics and ribosome profiling resulted in the detection of large numbers of small proteins. The variety of functions of small proteins is also emerging. It seems to be the right time to reflect on why small proteins remained invisible. In addition to the obvious technical challenge of detecting small proteins, they were mostly forgotten from annotations and they escaped detection because they were not sought. In this review, we identify conventions that need to be revisited, including the assumption that mature mRNAs carry only one coding sequence. The large-scale discovery of small proteins and of their functions will require changing some paradigms and undertaking the annotation of ORFs that are still largely perceived as irrelevant coding information compared to already annotated coding sequences.
Assuntos
Anotação de Sequência Molecular , Fases de Leitura Aberta , Biossíntese de Proteínas , Proteínas/metabolismo , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Genoma Humano , Genômica , Humanos , Proteínas/genética , RNA Mensageiro/genética , RibossomosRESUMO
mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma.
Assuntos
Biossíntese de Proteínas , RNA Mensageiro/genética , Animais , Células Eucarióticas/metabolismo , Humanos , Fases de Leitura Aberta , RNA Mensageiro/químicaRESUMO
Spinocerebellar ataxia type 1 is an autosomal dominant cerebellar ataxia associated with the expansion of a polyglutamine tract within the ataxin-1 (ATXN1) protein. Recent studies suggest that understanding the normal function of ATXN1 in cellular processes is essential to decipher the pathogenesis mechanisms in spinocerebellar ataxia type 1. We found an alternative translation initiation ATG codon in the +3 reading frame of human ATXN1 starting 30 nucleotides downstream of the initiation codon for ATXN1 and ending at nucleotide 587. This novel overlapping open reading frame (ORF) encodes a 21-kDa polypeptide termed Alt-ATXN1 (Alternative ATXN1) with a completely different amino acid sequence from ATXN1. We introduced a hemagglutinin tag in-frame with Alt-ATXN1 in ATXN1 cDNA and showed in cell culture the co-expression of both ATXN1 and Alt-ATXN1. Remarkably, Alt-ATXN1 colocalized and interacted with ATXN1 in nuclear inclusions. In contrast, in the absence of ATXN1 expression, Alt-ATXN1 displays a homogenous nucleoplasmic distribution. Alt-ATXN1 interacts with poly(A)(+) RNA, and its nuclear localization is dependent on RNA transcription. Polyclonal antibodies raised against Alt-ATXN1 confirmed the expression of Alt-ATXN1 in human cerebellum expressing ATXN1. These results demonstrate that human ATXN1 gene is a dual coding sequence and that ATXN1 interacts with and controls the subcellular distribution of Alt-ATXN1.
Assuntos
Processamento Alternativo , Homologia de Genes/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fases de Leitura Aberta/genética , Sequência de Aminoácidos , Animais , Ataxina-1 , Ataxinas , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cerebelo/metabolismo , Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HEK293 , Células HeLa , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Ataxias Espinocerebelares/genética , TransfecçãoRESUMO
BACKGROUND: Dysregulated protein kinase signaling is involved in the pathogenesis of many chronic diseases. However, the dysregulated signaling pathways critical to prion pathogenesis remain incompletely characterized. Global analyses of signaling pathways may be useful to better characterize these pathways. We therefore set out to develop such global assays. To this end, we used as a model cytoplasmic mutants of the cellular prion protein (PrPC), which are toxic to N2a neuroblastoma cells. We tested the global assays for their sensitivity to detect changes in signaling pathways in cells expressing cytoplasmic PrP mutants. METHODS: We developed a targeted proteomics (kinomics) approach using multiplex Western blots to identify signaling pathways dysregulated in chronic neurological pathologies. We tested the approach for its potential ability to detect signaling changes in N2a cells expressing cytoplasmic PrP mutants. RESULTS: Multiplex Western blots were designed to quantitate the expression levels of 137 protein kinases in a single membrane and using only 1.2 mg of sample. The response of the blots was sensitive and linear to changes of 6% in protein levels. Hierarchical and functional clustering of the relative expression levels identified an mTOR signaling pathway as potentially dysregulated in N2a cells expressing cytoplasmic PrP. The mTOR signaling pathway regulates global protein synthesis, which is inhibited in cells expressing cytoplasmic PrP. The levels of proteins involved in the Akt1/p70S6K branch of mTOR signaling changed in synchrony with time of cytoplasmic PrP expression. Three kinases in this pathway, Akt, p70S6K, and eIF4B were in their inactive states, as evaluated by phosphorylation of their regulatory sites. CONCLUSION: The results presented are consistent with the previously reported inhibition of Akt/p70S6K/eIF4B signaling as mediating pathogenesis of cytoplasmic PrP. We conclude that the kinomic analyses are sensitive and specific to detect signaling pathways dysregulated in a simple in vitro model of PrP pathogenesis.
Assuntos
Western Blotting/métodos , Citoplasma/metabolismo , Proteínas PrPC/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Transdução de Sinais , Linhagem Celular Tumoral , Citoplasma/química , Citoplasma/genética , Humanos , Proteínas PrPC/genética , Proteínas/química , Proteínas/genéticaRESUMO
Proteogenomics has revealed the translation of unannotated open reading frames (ORFs) present in mRNAs and in noncoding RNAs (ncRNAs). OpenProt annotates all ORFs with a minimum of 30 codons in the transcriptome of several species and displays many functional features associated with the corresponding proteins. Two types of proteins are annotated: reference or canonical proteins which are proteins already annotated in UniProt, RefSeq, or Ensembl and noncanonical proteins. Noncanonical proteins form two groups: predicted novel isoforms that display a significant level of homology with a reference protein and alternative proteins that are new proteins with no significant homology to known proteins. This chapter describes how to check whether a gene and/or transcript contains multiple open reading frames and how to use OpenProt databases for the detection of alternative proteins and novel isoforms by mass spectrometry-based proteomics.
Assuntos
Espectrometria de Massas , Fases de Leitura Aberta , Proteoma , Espectrometria de Massas/métodos , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Anotação de Sequência Molecular , Proteogenômica/métodosRESUMO
Proteogenomics is becoming a powerful tool in personalized medicine by linking genomics, transcriptomics and mass spectrometry (MS)-based proteomics. Due to increasing evidence of alternative open reading frame-encoded proteins (AltProts), proteogenomics has a high potential to unravel the characteristics, variants, expression levels of the alternative proteome, in addition to already annotated proteins (RefProts). To obtain a broader view of the proteome of ovarian cancer cells compared to ovarian epithelial cells, cell-specific total RNA-sequencing profiles and customized protein databases were generated. In total, 128 RefProts and 30 AltProts were identified exclusively in SKOV-3 and PEO-4 cells. Among them, an AltProt variant of IP_715944, translated from DHX8, was found mutated (p.Leu44Pro). We show high variation in protein expression levels of RefProts and AltProts in different subcellular compartments. The presence of 117 RefProt and two AltProt variants was described, along with their possible implications in the different physiological/pathological characteristics. To identify the possible involvement of AltProts in cellular processes, cross-linking-MS (XL-MS) was performed in each cell line to identify AltProt-RefProt interactions. This approach revealed an interaction between POLD3 and the AltProt IP_183088, which after molecular docking, was placed between POLD3-POLD2 binding sites, highlighting its possibility of the involvement in DNA replication and repair.
Assuntos
Neoplasias Ovarianas , Proteogenômica , Proteoma , Humanos , Feminino , Proteogenômica/métodos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteoma/metabolismo , Linhagem Celular Tumoral , Fases de Leitura Aberta/genéticaRESUMO
A major scientific drive is to characterize the protein-coding genome as it provides the primary basis for the study of human health. But the fundamental question remains: what has been missed in prior genomic analyses? Over the past decade, the translation of non-canonical open reading frames (ncORFs) has been observed across human cell types and disease states, with major implications for proteomics, genomics, and clinical science. However, the impact of ncORFs has been limited by the absence of a large-scale understanding of their contribution to the human proteome. Here, we report the collaborative efforts of stakeholders in proteomics, immunopeptidomics, Ribo-seq ORF discovery, and gene annotation, to produce a consensus landscape of protein-level evidence for ncORFs. We show that at least 25% of a set of 7,264 ncORFs give rise to translated gene products, yielding over 3,000 peptides in a pan-proteome analysis encompassing 3.8 billion mass spectra from 95,520 experiments. With these data, we developed an annotation framework for ncORFs and created public tools for researchers through GENCODE and PeptideAtlas. This work will provide a platform to advance ncORF-derived proteins in biomedical discovery and, beyond humans, diverse animals and plants where ncORFs are similarly observed.