Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 508(7495): 269-73, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24590072

RESUMO

Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (<32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (∼9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.


Assuntos
Medula Óssea/metabolismo , Oxigênio/análise , Animais , Artérias/metabolismo , Medula Óssea/irrigação sanguínea , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Bussulfano/farmacologia , Hipóxia Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hipóxia/diagnóstico , Hipóxia/metabolismo , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Nestina/metabolismo , Oxigênio/metabolismo , Fótons , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/efeitos da radiação
2.
Angew Chem Int Ed Engl ; 54(29): 8340-62, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26084034

RESUMO

Oxygen monitoring has been a topic of exhaustive study given its central role in the biochemistry of life. The ability to quantify the physiological distribution and real-time dynamics of oxygen from sub-cellular to macroscopic levels is required to fully understand the mechanisms associated with both normal physiology and disease states. This Review will present the most significant recent advances in the development of oxygen-sensing materials and techniques, including polarographic, nuclear medicine, magnetic resonance, and optical approaches, that can be applied specifically for the real-time monitoring of oxygen dynamics in cellular and tissue environments. As some of the most exciting recent advances in synthetic methods and biomedical applications have been in the field of optical oxygen sensors, a major focus will be on the development of these toolkits.


Assuntos
Técnicas Biossensoriais/métodos , Oxigênio/análise , Animais , Técnicas Biossensoriais/instrumentação , Técnicas de Diagnóstico por Radioisótopos/instrumentação , Hemoglobinas/análise , Humanos , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Polarografia/instrumentação , Polarografia/métodos
3.
Angew Chem Int Ed Engl ; 54(49): 14728-31, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26510549

RESUMO

A new group of "clickable" and brightly emissive metalloporphyrins has been developed for the visualization of oxygenation under ambient light with the naked eye. These alkynyl-terminated compounds permit the rapid and facile synthesis of oxygen-sensing dendrimers through azide-alkyne click chemistry. With absorption maxima overlapping with the wavelengths of common commercial laser sources, they are readily applicable to biomedical imaging of tissue oxygenation. An efficient synthetic methodology, featuring the stable trimethylacetyl (pivaloyl) protecting group, is described for their preparation. A paint-on liquid bandage containing a new, click-synthesized porphyrin dendrimer has been used to map oxygenation across an ex vivo porcine skin burn model.


Assuntos
Química Click , Luz , Oxigênio/química , Porfirinas/química
4.
Anal Chem ; 86(12): 5937-45, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24848643

RESUMO

Recent development of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen enabled first noninvasive high-resolution measurements of tissue oxygenation in vivo in 3D, providing valuable physiological information. The so far developed two-photon-enhanced phosphorescent probes comprise antenna-core constructs, in which two-photon absorbing chromophores (antenna) capture and channel excitation energy to a phosphorescent core (metalloporphyrin) via intramolecular excitation energy transfer (EET). These probes allowed demonstration of the methods' potential; however, they suffer from a number of limitations, such as partial loss of emissivity to competing triplet state deactivation pathways (e.g., electron transfer) and suboptimal sensitivity to oxygen, thereby limiting spatial and temporal resolution of the method. Here we present a new probe, PtTCHP-C307, designed to overcome these limitations. The key improvements include significant increase in the phosphorescence quantum yield, higher efficiency of the antenna-core energy transfer, minimized quenching of the phosphorescence by electron transfer and increased signal dynamic range. For the same excitation flux, the new probe is able to produce up to 6-fold higher signal output than previously reported molecules. Performance of PtTCHP-C307 was demonstrated in vivo in pO2 measurements through the intact mouse skull into the bone marrow, where all blood cells are made from hematopoietic stem cells.


Assuntos
Sondas Moleculares , Oxigênio/análise , Fótons , Análise Espectral
5.
Angew Chem Int Ed Engl ; 53(14): 3671-4, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24590700

RESUMO

Hypoxia is an important contributing factor to the development of drug-resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click-assembled oxygen-sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click-based ligation of poly(amidoamine)-like subunits for rapid assembly. Near-infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof-of-concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth-resolved imaging in tissue and tissue models.


Assuntos
Microscopia Confocal/métodos , Nanoconjugados/química , Nanotecnologia/métodos , Neoplasias/diagnóstico por imagem , Antineoplásicos/uso terapêutico , Química Click , Humanos , Neoplasias/tratamento farmacológico , Cintilografia
6.
Biosens Bioelectron ; 262: 116549, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971037

RESUMO

Continuous oxygenation monitoring of machine-perfused organs or transposed autologous tissue is not currently implemented in clinical practice. Oxygenation is a critical parameter that could be used to verify tissue viability and guide corrective interventions, such as perfusion machine parameters or surgical revision. This work presents an innovative technology based on oxygen-sensitive, phosphorescent metalloporphyrin allowing continuous and non-invasive oxygen monitoring of ex-vivo perfused vascularized fasciocutaneous flaps. The method comprises a small, low-energy optical transcutaneous oxygen sensor applied on the flap's skin paddle as well as oxygen sensing devices placed into the tubing. An intermittent perfusion setting was designed to study the response time and accuracy of this technology over a total of 54 perfusion cycles. We further evaluated correlation between the continuous oxygen measurements and gold-standard perfusion viability metrics such as vascular resistance, with good agreement suggesting potential to monitor graft viability at high frequency, opening the possibility to employ feedback control algorithms in the future. This proof-of-concept study opens a range of research and clinical applications in reconstructive surgery and transplantation at a time when perfusion machines undergo rapid clinical adoption with potential to improve outcomes across a variety of surgical procedures and dramatically increase access to transplant medicine.


Assuntos
Técnicas Biossensoriais , Oxigênio , Perfusão , Procedimentos de Cirurgia Plástica , Oxigênio/metabolismo , Humanos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Animais , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Desenho de Equipamento , Retalhos Cirúrgicos , Suínos
7.
Sens Diagn ; 3(6): 1014-1019, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38882471

RESUMO

Integration of physiological sensing modalities within tissue and organ perfusion systems is becoming a steadily expanding field of research, aimed at achieving technological breakthrough innovations that will expand the sites and clinical settings at which such systems can be used. This is becoming possible in part due to the advancement of user-friendly optical sensors in recent years, which rely both on synthetic, luminescent sensor molecules and inexpensive, low-power electronic components for device engineering. In this article we report a novel approach towards enabling automated, continuous monitoring of oxygenation during ex vivo organ perfusion, by combining versatile flow cell components and low-power, programmable electronic readout devices. The sensing element comprises a 3D printed, miniature flow cell with tubing connectors and an affixed oxygen-sensing thin film material containing in-house developed, brightly-emitting metalloporphyrin phosphor molecules embedded within a polymer matrix. Proof-of-concept validation of this technology is demonstrated through integration within the tubing circuit of a transportable medical device for hypothermic oxygenated machine perfusion of extracted kidneys as a model for organs to be preserved as transplants.

8.
Nat Methods ; 7(9): 755-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20693997

RESUMO

Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.


Assuntos
Córtex Cerebral/irrigação sanguínea , Oxigênio/análise , Oxigênio/sangue , Prótons , Animais , Circulação Cerebrovascular , Microscopia de Fluorescência , Modelos Moleculares , Pressão Parcial , Ratos
9.
Sci Rep ; 13(1): 14782, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679415

RESUMO

Oxygenation is a crucial indicator of tissue viability and function. Oxygen tension ([Formula: see text]), i.e. the amount of molecular oxygen present in the tissue is a direct result of supply (perfusion) and consumption. Thus, measurement of [Formula: see text] is an effective method to monitor tissue viability. However, tissue oximetry sensors commonly used in clinical practice instead rely on measuring oxygen saturation ([Formula: see text]), largely due to the lack of reliable, affordable [Formula: see text] sensing solutions. To address this issue we present a proof-of-concept design and validation of a low-cost, lifetime-based oxygen sensing fiber. The sensor consists of readily-available off-the shelf components such as a microcontroller, a light-emitting diode (LED), an avalanche photodiode (APD), a temperature sensor, as well as a bright in-house developed porphyrin molecule. The device was calibrated using a benchtop setup and evaluated in three in vivo animal models. Our findings show that the new device design in combination with the bright porphyrin has the potential to be a useful and accurate tool for measuring [Formula: see text] in tissue, while also highlighting some of the limitations and challenges of oxygen measurements in this context.


Assuntos
Tecnologia de Fibra Óptica , Porfirinas , Animais , Gasometria , Oximetria , Oxigênio
10.
J Neurosci ; 31(38): 13676-81, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21940458

RESUMO

In vivo imaging of cerebral tissue oxygenation is important in defining healthy physiology and pathological departures associated with cerebral disease. We used a recently developed two-photon microscopy method, based on a novel phosphorescent nanoprobe, to image tissue oxygenation in the rat primary sensory cortex in response to sensory stimulation. Our measurements showed that a stimulus-evoked increase in tissue pO2 depended on the baseline pO2 level. In particular, during sustained stimulation, the steady-state pO2 at low-baseline locations remained at the baseline, despite large pO2 increases elsewhere. In contrast to the steady state, where pO2 never decreased below the baseline, transient decreases occurred during the "initial dip" and "poststimulus undershoot." These results suggest that the increase in blood oxygenation during the hemodynamic response, which has been perceived as a paradox, may serve to prevent a sustained oxygenation drop at tissue locations that are remote from the vascular feeding sources.


Assuntos
Circulação Cerebrovascular/fisiologia , Oxigênio/sangue , Córtex Somatossensorial/metabolismo , Animais , Mapeamento Encefálico/métodos , Estimulação Elétrica/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA