Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 2): 056402, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18643171

RESUMO

Relativistic electrons accelerated by laser wakefields can produce x-ray beams from their motion in plasma termed betatron oscillations. Detailed spectral characterization is presented in which the amplitude of the betatron oscillations r is studied by numerical analysis of electron and x-ray spectra measured simultaneously. We find that r reaches as low as 1 mum in agreement with previous studies of radiation based on coherence and far-field spatial profile.

2.
Light Sci Appl ; 6(11): e17086, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30167214

RESUMO

Technology based on high-peak-power lasers has the potential to provide compact and intense radiation sources for a wide range of innovative applications. In particular, electrons that are accelerated in the wakefield of an intense laser pulse oscillate around the propagation axis and emit X-rays. This betatron source, which essentially reproduces the principle of a synchrotron at the millimeter scale, provides bright radiation with femtosecond duration and high spatial coherence. However, despite its unique features, the usability of the betatron source has been constrained by its poor control and stability. In this article, we demonstrate the reliable production of X-ray beams with tunable polarization. Using ionization-induced injection in a gas mixture, the orbits of the relativistic electrons emitting the radiation are reproducible and controlled. We observe that both the signal and beam profile fluctuations are significantly reduced and that the beam pointing varies by less than a tenth of the beam divergence. The polarization ratio reaches 80%, and the polarization axis can easily be rotated. We anticipate a broad impact of the source, as its unprecedented performance opens the way for new applications.

3.
Phys Rev Lett ; 97(22): 225002, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17155808

RESUMO

We demonstrate that betatron x-ray radiation accurately provides direct imaging of electrons trajectories accelerated in laser wakefields. Experimental far field x-ray beam profiles reveal that electrons can follow similar transverse trajectories with typical excursions of 1.5 microm+/-0.5 microm in the plane of laser polarization and 0.7 microm+/-0.2 microm in the plane perpendicular.

4.
Phys Rev Lett ; 93(13): 135005, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15524731

RESUMO

We demonstrate that a beam of x-ray radiation can be generated by simply focusing a single high-intensity laser pulse into a gas jet. A millimeter-scale laser-produced plasma creates, accelerates, and wiggles an ultrashort and relativistic electron bunch. As they propagate in the ion channel produced in the wake of the laser pulse, the accelerated electrons undergo betatron oscillations, generating a femtosecond pulse of synchrotron radiation, which has keV energy and lies within a narrow (50 mrad) cone angle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA