RESUMO
In children with sickle cell disease (SCD), splenectomy is immediately beneficial for acute sequestration crises and hypersplenism (ASSC/HyS) but portends a long-term risk of asplenia-related complications. We retrieved peripheral and splenic red blood cells (RBCs) from 17 SCD children/teenagers undergoing partial splenectomy for ASSC/HyS, 12 adult subjects without RBC-related disease undergoing splenectomy (controls), five human spleens perfused ex vivo with HbSS- and HbAA-RBC, and quantified abnormal RBC by microscopy, spleen-mimetic RBC filtration, and adhesion assays. Spleens were analyzed by immunohistochemistry and transmission electron microscopy (TEM). In circulating blood of SCD and control subjects, dysmorphic (elongated/spherocytic) RBCs were <2%, while proportions of pocked-RBC were 4.3-fold higher in SCD children than in controls. Compared to controls, splenic RBCs were more frequently dysmorphic (29.3% vs. 0.4%), stiffer (42.2% vs. 12.4%), and adherent (206 vs. 22 adherent RBC/area) in SCD subjects. By TEM, both polymer-containing and homogenous RBC contributed to spleen congestion, resulting in 3.8-fold higher RBC population density in SCD spleens than in control spleens, predominantly in the cords. Perfused spleens with normal function displayed similar congestion and retention of dysmorphic RBC as SCD spleens. The population density of active macrophages was similar in SCD and control spleens, with a relative deficit in phagocytosis of polymer-containing RBC. Despite the existence of hyposplenism, splenectomy in SCD children removes an organ that still efficiently filters out potentially pathogenic altered RBC. Innovative treatments allowing fine-tuned reduction of RBC retention would alleviate spleen congestion, the major pathogenic process in ASSC/HyS, while preserving spleen protective functions for the future.
RESUMO
Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.
Assuntos
Preservação de Sangue , Eritrócitos , Animais , Transfusão de Eritrócitos , Cinética , Camundongos , EsferócitosRESUMO
Red blood cells (RBC) transfusion is used to alleviate symptoms and prevent complications in anemic patients by restoring oxygen delivery to tissues. RBC transfusion efficacy, that can be measured by a rise in hemoglobin (Hb) concentration, is influenced by donor-, product-, and recipient-related characteristics. In some studies, severe pre-transfusion anemia is associated with a greater than expected Hb increment following transfusion but the biological mechanism underpinning this relationship remains poorly understood. We conducted a prospective study in critically ill patients and quantified Hb increment following one RBC transfusion. In a murine model, we investigated the possibility that, in conjunction with the host erythropoietic response, the persistence of transfused donor RBC is improved to maintain a highest RBC biomass. We confirmed a correlation between a greater Hb increment and a deeper pre-transfusion anemia in a cohort of 17 patients. In the mouse model, Hb increment and post-transfusion recovery were increased in anemic recipients. Post-transfusion RBC recovery was improved in hypoxic mice or those receiving an erythropoiesis-stimulating agent and decreased in those treated with erythropoietin (EPO)-neutralizing antibodies, suggesting that EPO signaling is necessary to observe this effect. Irradiated recipients also showed decreased post-transfusion RBC recovery. The EPO-induced post-transfusion RBC recovery improvement was abrogated in irradiated or in macrophage-depleted recipients, but maintained in splenectomized recipients, suggesting a mechanism requiring erythroid progenitors and macrophages, but which is not spleen-specific. Our study highlights a physiological role of EPO in downregulating post-transfusion RBC clearance, contributing to maintain a vital RBC biomass to rapidly cope with hypoxemia.
Assuntos
Anemia , Eritropoetina , Humanos , Animais , Camundongos , Estudos Prospectivos , Anemia/tratamento farmacológico , Anemia/etiologia , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Eritropoese/fisiologia , EritrócitosRESUMO
BACKGROUND: Intravenous artesunate is the World Health Organization-recommended first-line treatment for severe malaria worldwide, but it is still not fully licensed in Europe. Observational studies documenting its safety and efficacy in imported malaria are thus essential. METHODS: We prospectively collected clinical and epidemiological features of 1391 artesunate-treated patients among 110 participant centers during the first 7 years (2011-2017) of a national program implemented by the French Drug Agency. RESULTS: Artesunate became the most frequent treatment for severe malaria in France, rising from 9.9% in 2011 to 71.4% in 2017. Mortality was estimated at 4.1%. Treatment failure was recorded in 27 patients, but mutations in the Kelch-13 gene were not observed. Main reported adverse events (AEs) were anemia (136 cases), cardiac events (24, including 20 episodes of conduction disorders and/or arrhythmia), and liver enzyme elevation (23). Mortality and AEs were similar in the general population and in people with human immunodeficiency virus, who were overweight, or were pregnant, but the only pregnant woman treated in the first trimester experimented a hemorrhagic miscarriage. The incidence of post-artesunate-delayed hemolysis (PADH) was 42.8% when specifically assessed in a 98-patient subgroup, but was not associated with fatal outcomes or sequelae. PADH was twice as frequent in patients of European compared with African origin. CONCLUSIONS: Artesunate was rapidly deployed and displayed a robust clinical benefit in patients with severe imported malaria, despite a high frequency of mild to moderate PADH. Further explorations in the context of importation should assess outcomes during the first trimester of pregnancy and collect rare but potentially severe cardiac AEs.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Antimaláricos/efeitos adversos , Artemisininas/uso terapêutico , Artesunato/uso terapêutico , Feminino , Hemólise , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , GravidezRESUMO
BACKGROUND: Red blood cells (RBC) change upon hypothermic conservation, and storage for 6 weeks is associated with the short-term clearance of 15% to 20% of transfused RBCs. Metabolic rejuvenation applied to RBCs before transfusion replenishes energetic sources and reverses most storage-related alterations, but how it impacts RBC circulatory functions has not been fully elucidated. STUDY DESIGN AND METHODS: Six RBC units stored under blood bank conditions were analyzed weekly for 6 weeks and rejuvenated on Day 42 with an adenine-inosine-rich solution. Impact of storage and rejuvenation on adenosine triphosphate (ATP) levels, morphology, accumulation of storage-induced microerythrocytes (SMEs), elongation under an osmotic gradient (by LORRCA), hemolysis, and phosphatidylserine (PS) exposure was evaluated. The impact of rejuvenation on filterability and adhesive properties of stored RBCs was also assessed. RESULTS: Rejuvenation of RBCs restored intracellular ATP to almost normal levels and decreased the PS exposure from 2.78% to 0.41%. Upon rejuvenation, the proportion of SME dropped from 28.2% to 9.5%, while the proportion of normal-shaped RBCs (discocytes and echinocytes 1) increased from 47.7% to 67.1%. In LORCCA experiments, rejuvenation did not modify the capacity of RBCs to elongate and induced a reduction in cell volume. In functional tests, rejuvenation increased RBC filterability in a biomimetic splenic filter (+16%) and prevented their adhesion to endothelial cells (-87%). CONCLUSION: Rejuvenation reduces the proportion of morphologically altered and adhesive RBCs that accumulate during storage. Along with the improvement in their filterability, these data show that rejuvenation improves RBC properties related to their capacity to persist in circulation after transfusion.
Assuntos
Trifosfato de Adenosina/metabolismo , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Adenina/farmacologia , Bancos de Sangue , Preservação de Sangue , Criopreservação , Células Endoteliais/metabolismo , Eritrócitos/citologia , Citometria de Fluxo , Hemólise , Humanos , Inosina/farmacologia , Fosfatidilserinas/metabolismo , Rejuvenescimento/fisiologia , Fatores de TempoRESUMO
BACKGROUND: Little is known on the use of artesunate compared with quinine for the treatment of imported malaria cases in nonendemic countries with a high level of care. Therefore, we compared the 2 treatments in terms of mortality and hospital and intensive care unit (ICU) discharge rates. METHODS: We analyzed the cohort of all severe imported malaria patients reported to the French National Reference Center from 2011 to 2017. After controlling for differences between quinine- and artesunate-treated individuals using the inverse probability of treatment weighting method, 28-day mortality rate was compared between the groups as well as hospital and ICU discharge rates using Kaplan-Meier estimation and weighted Cox proportional hazard models. RESULTS: Overall, 1544 patients were enrolled. Fifty patients died, 18 in the quinine group (n = 460) and 32 in the artesunate group (n = 1084), corresponding to death rates of 3.9% and 2.9%, respectively. No difference was evident between quinine and artesunate either in mortality or in hospital discharge rate, with hazard ratios (HRs) of 1.03 (95% confidence interval [CI], 0.47-2.25) and 1.12 (95% CI, 0.94-1.34), respectively. Artesunate was associated with a faster ICU discharge rate (HR, 1.18. 95% CI, 1.02-1.36). CONCLUSIONS: In a country with a high level of care, artesunate was associated with a shorter length of stay in the ICU, which supports the actual therapeutic transition; however, no difference was found in terms of mortality or in hospital discharge rates between artesunate- and quinine-treated patients.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Artesunato/uso terapêutico , França/epidemiologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Pontuação de Propensão , Quinina/uso terapêuticoRESUMO
Pitting, the removal of dead parasites from their host erythrocyte, has been studied in patients with severe malaria treated parenterally with quinine or artesunate, and was recently shown to contribute to delayed hemolysis, a frequent adverse event of artesunate. We quantified pitting in 81 travelers treated with oral antimalarial therapy. Pitting rate was high (55.8%) with artemisinin-based combinations, but <10% with the nonartemisinin drugs quinine, mefloquine, and atovaquone-proguanil. This may, in part, explain the slower parasite clearance in patients treated with antimalarial drugs lacking an artemisinin component, as well as the absence of posttreatment hemolysis with these drugs.
Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Atovaquona/farmacologia , Malária Falciparum/tratamento farmacológico , Mefloquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proguanil/farmacologia , Adolescente , Adulto , Artesunato/farmacologia , Criança , Combinação de Medicamentos , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Storage lesion may explain the rapid clearance of up to 25% of transfused red blood cells (RBCs) in recipients. Several alterations affect stored RBC but a quantitative, whole cell-based predictor of transfusion yield is lacking. Because RBCs with reduced surface area are retained by the spleen, we quantified changes in RBC dimensions during storage. STUDY DESIGN AND METHODS: Using imaging flow cytometry we observed the dimension and morphology of RBCs upon storage, along with that of conventional biochemical and mechanical markers of storage lesion. We then validated these findings using differential interference contrast (DIC) microscopy and quantified the accumulation of microparticles (MPs). RESULTS: Mean projected surface area of the whole RBC population decreased from 72.4 to 68.4 µm2 , a change resulting from the appearance of a well-demarcated subpopulation of RBCs with reduced mean projected surface (58 µm2 , 15.2%-19.9% reduction). These "small RBCs" accounted for 4.9 and 23.6% of all RBCs on Days 3 and 42 of storage, respectively. DIC microscopy confirmed that small RBCs had shifted upon storage from discocytes to echinocytes III, spheroechinocytes, and spherocytes. Glycophorin A-positive MPs and small RBCs appeared after similar kinetics. CONCLUSION: The reduction in surface area of small RBCs is expected to induce their retention by the spleen. We propose that small RBCs generated by MP-induced membrane loss are preferentially cleared from the circulation shortly after transfusion of long-stored blood. Their operator-independent quantification using imaging flow cytometry may provide a marker of storage lesion potentially predictive of transfusion yield.
Assuntos
Preservação de Sangue , Micropartículas Derivadas de Células , Citometria de Fluxo/métodos , Esferócitos/citologia , Biomarcadores/sangue , Feminino , Humanos , Cinética , Masculino , Esferócitos/metabolismo , Fatores de TempoRESUMO
Patients with severe malaria treated with artesunate sometimes experience a delayed hemolytic episode. Artesunate (AS) induces pitting, a splenic process whereby dead parasites are expelled from their host erythrocytes. These once-infected erythrocytes then return to the circulation. We analyzed hematologic parameters in 123 travelers treated with AS for severe malaria. Among 60 nontransfused patients observed for more than 8 days, 13 (22%) had delayed hemolysis. The peak concentration of circulating once-infected erythrocytes was measured during the first week in 21 patients and was significantly higher in 9 patients with delayed hemolysis than in 12 with other patterns of anemia (0.30 vs 0.07; P = .0001). The threshold of 180 million once-infected erythrocytes per liter discriminated patients with delayed hemolysis with 89% sensitivity and 83% specificity. Once-infected erythrocyte morphology analyzed by using ImageStream in 4 patients showed an 8.9% reduction in their projected area, an alteration likely contributing to their shorter lifespan. Delayed clearance of infected erythrocytes spared by pitting during AS treatment is an original mechanism of hemolytic anemia. Our findings consolidate a disease framework for posttreatment anemia in malaria in which delayed hemolysis is a new entity. The early concentration of once-infected erythrocytes is a solid candidate marker to predict post-AS delayed hemolysis.
Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Hemólise/efeitos dos fármacos , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Adulto , Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/parasitologia , Artesunato , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Seguimentos , Humanos , Malária Falciparum/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Adulto JovemRESUMO
BACKGROUND: Sickle-cell trait (HbAS) reduces falciparum malaria risk and suppresses parasitaemia. Although several candidate mechanisms have been proposed, their epidemiological, clinical and experimental correlates have not been adequately explained. To explore the basis for generally lower parasitaemias and delayed malaria episodes in children with HbAS, it is hypothesized here that their spleen-dependent removal of ring-infected red blood cells (RBCs) is more efficient than in children with normal haemoglobin A (HbAA). METHODS: The mechanical splenic retention of Plasmodium falciparum-infected RBCs from subjects with HbAS or HbAA was investigated using two physiologically relevant methods: microsphiltration and ex vivo spleen perfusion. P. falciparum-infected RBCs obtained from in vitro cultures and from patients were used in either normoxic or hypoxic conditions. The effect of sickling in ring-infected HbAS RBCs was also investigated. RESULTS: When a laboratory-adapted parasite strain was analysed, ring-infected HbAA RBCs were retained in microsphilters at similar or greater levels than ring-infected HbAS RBCs, under normoxic (retention rate 62.5 vs 43.8 %, P < 0.01) and hypoxic (54.0 vs 38.0 %, P = 0.11) conditions. When parasitized RBCs from Malian children were analysed, retention of ring-infected HbAA and HbAS RBCs was similar when tested either directly ex vivo (32.1 vs 28.7 %, P = 0.52) or after one re-invasion in vitro (55.9 vs 43.7 %, P = 0.30). In hypoxia, sickling of uninfected and ring-infected HbAS RBCs (8.6 vs 5.7 %, P = 0.51), and retention of ring-infected HbAA and HbAS RBCs in microsphilters (72.5 vs 68.8 %, P = 0.38) and spleens (41.2 vs 30.4 %, P = 0.11), also did not differ. Retention of HbAS and HbAA RBCs infected with mature P. falciparum stages was greater than 95 %. CONCLUSIONS: Sickle-cell trait is not associated with higher retention or sickling of ring-infected RBCs in experimental systems reflecting the mechanical sensing of RBCs by the human spleen. As observed with HbAA RBCs, HbAS RBCs infected with mature parasites are completely retained. Because the cytoadherence of HbAS RBCs infected with mature parasites is impaired, the very efficient splenic retention of such non-adherent infected RBCs is expected to result in a slower rise of P. falciparum parasitaemia in sickle-cell trait carriers.
RESUMO
BACKGROUND: In Plasmodium falciparum-infected patients treated with artemisinins, parasitemia declines through so-called pitting, an innate splenic process that transforms infected red blood cells (iRBCs) into once-infected RBCs (O-iRBCs). METHODS: We measured pitting in 83 French travelers and 42 Malian children treated for malaria with artesunate. RESULTS: In travelers, O-iRBCs peaked at 107.7% initial parasitemia. In Malian children aged 1.5-4 years, O-iRBCs peaked at higher concentrations than in children aged 9-13 years (91.60% vs 31.95%; P = .0097). The parasite clearance time in older children was shorter than in younger children (P = .0001), and the decline in parasitemia in children aged 1.5-4 years often started 6 hours after treatment initiation, a lag phase generally absent in infants and older children. A 6-hour lag phase in artificial pitting of artesunate-exposed iRBCs was also observed in vitro. The proportion of iRBCs recognized by autologous immunoglobulin G (IgG) correlated with the parasite clearance time (r = -0.501; P = .0006) and peak O-iRBC concentration (r = -0.420; P = .0033). CONCLUSIONS: Antimalarial immunity correlates with fast artemisinin-induced parasite clearance and low pitting rates. In nonimmune populations, artemisinin-induced P. falciparum clearance is related to pitting and starts after a 6-hour lag phase. In immune populations, passively and naturally acquired immune mechanisms operating faster than pitting may exist. This mechanism may mitigate the emergence of artemisinin-resistant P. falciparum in Africa.
Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Artesunato , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Mali , Carga Parasitária , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium falciparum/isolamento & purificação , Estudos Retrospectivos , Resultado do TratamentoRESUMO
Artesunate is the most effective treatment for severe malaria. However, delayed-onset hemolytic anemia has been observed in ≈20% of travelers who receive artesunate, ≈60% of whom require transfusion. This finding could discourage physicians from using artesunate. We prospectively evaluated a cohort of 123 patients in France who had severe imported malaria that was treated with artesunate; our evaluation focused on outcome, adverse events, and postartesunate delayed-onset hemolysis (PADH). Of the 123 patients, 6 (5%) died. Overall, 97 adverse events occurred. Among the 78 patients who received follow-up for >8 days after treatment initiation, 76 (97%) had anemia, and 21 (27%) of the 78 cases were recorded as PADH. The median drop in hemoglobin levels was 1.3 g/dL; 15% of patients with PADH had hemoglobin levels of <7 g/dL, and 1 required transfusion. Despite the high incidence of PADH, the resulting anemia remained mild in 85% of cases. This reassuring result confirms the safety and therapeutic benefit of artesunate.
Assuntos
Anemia Hemolítica/epidemiologia , Anemia Hemolítica/etiologia , Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Malária/complicações , Malária/transmissão , Viagem , Adolescente , Anemia Hemolítica/história , Anemia Hemolítica/mortalidade , Anemia Hemolítica/terapia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Artesunato , Transfusão de Sangue , Feminino , França/epidemiologia , História do Século XXI , Humanos , Malária/tratamento farmacológico , Malária/mortalidade , Masculino , Resultado do TratamentoRESUMO
Although refrigerated storage slows the metabolism of volunteer donor RBCs, cellular aging still occurs throughout this in vitro process, which is essential in transfusion medicine. Storage-induced microerythrocytes (SMEs) are morphologically-altered senescent RBCs that accumulate during storage and which are cleared from circulation following transfusion. However, the molecular and cellular alterations that trigger clearance of this RBC subset remain to be identified. Using a staining protocol that sorts long-stored SMEs (i.e., CFSE high ) and morphologically-normal RBCs (CFSE low ), these in vitro aged cells were characterized. Metabolomics analysis identified depletion of energy, lipid-repair, and antioxidant metabolites in CFSE high RBCs. By redox proteomics, irreversible protein oxidation primarily affected CFSE high RBCs. By proteomics, 96 proteins, mostly in the proteostasis family, had relocated to CFSE high RBC membranes. CFSE high RBCs exhibited decreased proteasome activity and deformability; increased phosphatidylserine exposure, osmotic fragility, and endothelial cell adherence; and were cleared from the circulation during human spleen ex vivo perfusion. Conversely, molecular, cellular, and circulatory properties of long-stored CFSE low RBCs resembled those of short-stored RBCs. CFSE high RBCs are morphologically and metabolically altered, have irreversibly oxidized and membrane-relocated proteins, and exhibit decreased proteasome activity. In vitro aging during storage selectively alters metabolism and proteostasis in SMEs, targeting these senescent cells for clearance.
RESUMO
The spleen plays a dual role of immune response and the filtration of red blood cells (RBC), the latter function being performed within the unique microcirculatory architecture of the red pulp. The red pulp filters and eliminates senescent and pathological RBC and can expell intra-erythrocytic rigid bodies through the so-called pitting mechanism. The loss of splenic function increases the risk of infections, thromboembolism, and hematological malignancies. However, current diagnostic tests such as quantification of Howell-Jolly Bodies and splenic scintigraphy lack sensitivity or are logistically demanding. Although not widely available in medical practice, the quantification of RBC containing vacuoles, i.e., pocked RBC, is a highly sensitive and specific marker for hyposplenism. The peripheral blood of hypo/asplenic individuals contains up to 80% RBC with vacuoles, whereas these pocked RBC account for less than 4% of RBC in healthy subjects. Despite their value as a spleen function test, intraerythrocytic vacuoles have received relatively limited attention so far, and little is known about their origin, content, and clearance. We provide an overview of the current knowledge regarding possible origins and mechanisms of elimination, as well as the potential function of these unique and original organelles observed in otherwise "empty" mature RBC. We highlight the need for further research on pocked RBC, particularly regarding their potential function and specific markers for easy counting and sorting, which are prerequisites for functional studies and wider application in medical practice.
RESUMO
Malaria parasites like Plasmodium falciparum multiply in red blood cells (RBC), which are cleared from the bloodstream by the spleen when their deformability is altered. Drug-induced stiffening of Plasmodium falciparum-infected RBC should therefore induce their elimination from the bloodstream. Here, based on this original mechanical approach, we identify safe drugs with strong potential to block the malaria transmission. By screening 13 555 compounds with spleen-mimetic microfilters, we identified 82 that target circulating transmissible form of P. falciparum. NITD609, an orally administered PfATPase inhibitor with known effects on P. falciparum, killed and stiffened transmission stages in vitro at nanomolar concentrations. Short exposures to TD-6450, an orally-administered NS5A hepatitis C virus inhibitor, stiffened transmission parasite stages and killed asexual stages in vitro at high nanomolar concentrations. A Phase 1 study in humans with a primary safety outcome and a secondary pharmacokinetics outcome ( https://clinicaltrials.gov , ID: NCT02022306) showed no severe adverse events either with single or multiple doses. Pharmacokinetic modelling showed that these concentrations can be reached in the plasma of subjects receiving short courses of TD-6450. This physiologically relevant screen identified multiple mechanisms of action, and safe drugs with strong potential as malaria transmission-blocking agents which could be rapidly tested in clinical trials.
Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Baço , Malária Falciparum/parasitologia , Plasmodium falciparum , Eritrócitos/parasitologiaRESUMO
BACKGROUND: Schistocyte counts are a cornerstone of the diagnosis of thrombotic microangiopathy syndrome (TMA). Their manual quantification is complex and alternative automated methods suffer from pitfalls that limit their use. We report a method combining imaging flow cytometry (IFC) and artificial intelligence for the direct label-free and operator-independent quantification of schistocytes in whole blood. METHODS: We used 135,045 IFC images from blood acquisition among 14 patients to extract 188 features with IDEAS® software and 128 features from a convolutional neural network (CNN) with Keras framework in order to train a support vector machine (SVM) blood elements' classifier used for schistocytes quantification. FINDING: Keras features showed better accuracy (94.03%, CI: 93.75-94.31%) than ideas features (91.54%, CI: 91.21-91.87%) in recognising whole-blood elements, and together they showed the best accuracy (95.64%, CI: 95.39-95.88%). We obtained an excellent correlation (0.93, CI: 0.90-0.96) between three haematologists and our method on a cohort of 102 patient samples. All patients with schistocytosis (>1% schistocytes) were detected with excellent specificity (91.3%, CI: 82.0-96.7%) and sensitivity (100%, CI: 89.4-100.0%). We confirmed these results with a similar specificity (91.1%, CI: 78.8-97.5%) and sensitivity (100%, CI: 88.1-100.0%) on a validation cohort (n=74) analysed in an independent healthcare centre. Simultaneous analysis of 16 samples in both study centres showed a very good correlation between the 2 imaging flow cytometers (Y=1.001x). INTERPRETATION: We demonstrate that IFC can represent a reliable tool for operator-independent schistocyte quantification with no pre-analytical processing which is of most importance in emergency situations such as TMA. FUNDING: None.
Assuntos
Inteligência Artificial , Máquina de Vetores de Suporte , Eritrócitos Anormais , Citometria de Fluxo , Humanos , Aprendizado de MáquinaRESUMO
Refrigerated storage of red cell concentrates before transfusion is associated with progressive alterations of red blood cells (RBC). Small RBC (type III echinocytes, sphero-echinocytes, and spherocytes) defined as storage-induced micro-erythrocytes (SME) appear during pretransfusion storage. SME accumulate with variable intensity from donor to donor, are cleared rapidly after transfusion, and their proportion correlates with transfusion recovery. They can be rapidly and objectively quantified using imaging flow cytometry (IFC). Quantifying SME using flow cytometry would further facilitate a physiologically relevant quality control of red cell concentrates. RBC stored in blood bank conditions were stained with a carboxyfluorescein succinimidyl ester (CFSE) dye and incubated at 37°C. CFSE intensity was assessed by flow cytometry and RBC morphology evaluated by IFC. We observed the accumulation of a CFSE high RBC subpopulation by flow cytometry that accounted for 3.3 and 47.2% at day 3 and 42 of storage, respectively. IFC brightfield images showed that this CFSE high subpopulation mostly contains SME while the CFSE low subpopulation mostly contains type I and II echinocytes and discocytes. Similar numbers of SME were quantified by IFC (based on projected surface area) and by flow cytometry (based on CFSE intensity). IFC and scanning electron microscopy showed that ≥95% pure subpopulations of CFSE high and CFSE low RBC were obtained by flow cytometry-based sorting. SME can now be quantified using a common fluorescent dye and a standard flow cytometer. The staining protocol enables specific sorting of SME, a useful tool to further characterize this RBC subpopulation targeted for premature clearance after transfusion.
RESUMO
In acute malaria, the bulk of erythrocyte loss occurs after therapy, with a nadir of hemoglobin generally observed 3-7 days after treatment. The fine mechanisms leading to this early post-treatment anemia are still elusive. We explored pathological changes in RBC subpopulations by quantifying biochemical and mechanical alterations during severe malaria treated with artemisinin derivatives, a drug family that induce "pitting" in the spleen. In this study, the hemoglobin concentration dropped by 1.93 G/dl during therapy. During the same period, iRBC accounting for 6.12% of all RBC before therapy (BT) were replaced by pitted-RBC, accounting for 5.33% of RBC after therapy (AT). RBC loss was thus of 15.9%, of which only a minor part was due to the loss of iRBC or pitted-RBC. When comparing RBC BT and AT to normal controls, lipidomics revealed an increase in the cholesterol/phosphatidylethanolamine ratio (0.17 versus 0.24, p < 0.001) and cholesterol/phosphatidylinositol ratio (0.36 versus 0.67, p = 0.001). Using ektacytometry, we observed a reduced deformability of circulating RBC, similar BT and AT, compared to health control donors. The mean Elongation Index at 1.69Pa was 0.24 BT and 0.23 AT vs. 0.28 in controls (p < 0.0001). At 30Pa EI was 0.56 BT and 0.56 AT vs. 0.60 in controls (p < 0.001). The retention rate (rr) of RBC subpopulations in spleen-mimetic microsphere layers was higher for iRBC (rr = 20% p = 0.0033) and pitted-RBC (rr = 19%, p = 0.0031) than for healthy RBC (0.12%). Somewhat surprisingly, the post-treatment anemia in malaria results from the elimination of RBC that were never infected.
RESUMO
BACKGROUND: In malaria-endemic areas, subjects from specific groups like Fulani have a peculiar protection against malaria, with high levels of IgM but also frequent anaemia and splenomegaly. The mechanisms underlying this phenotype remain elusive. METHODS: In a cohort study set up in Benin, West Africa, after a careful evaluation of malaria-related phenotypes, we measured the deformability of circulating erythrocytes in genetically distinct groups (including Fulani) living in sympatry, using ektacytometry and microsphiltration, a mimic of how the spleen clears rigid erythrocytes. Heritability of erythrocytes deformability was calculated, followed by a genome-wide association study (GWAS) of the same phenotype. FINDINGS: Compared to non-Fulani, Fulani displayed a higher deformability of circulating erythrocytes, pointing to an enhanced clearance of rigid erythrocytes by the spleen. This phenotype was observed in individuals displaying markers of Plasmodium falciparum infection. The heritability of this new trait was high, with a strong multigenic component. Five of the top 10 genes selected by a population structure-adjusted GWAS, expressed in the spleen, are potentially involved in splenic clearance of erythrocytes (CHERP, MB, PALLD, SPARC, PDE10A), through control of vascular tone, collagen synthesis and macrophage activity. INTERPRETATION: In specific ethnic groups, genetically-controlled processes likely enhance the innate retention of infected and uninfected erythrocytes in the spleen, explaining splenomegaly, anaemia, cryptic intrasplenic parasite loads, hyper-IgM, and partial protection against malaria. Beyond malaria-related phenotypes, inherited splenic hyper-filtration of erythrocytes may impact the pathogenesis of other hematologic diseases. FUNDING: ANR, National Geographic Society, IMEA, IRD, and Région Ile-de-France.