Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biomacromolecules ; 16(1): 275-83, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25469689

RESUMO

In the fields of tissue engineering and regenerative medicine, many researchers and companies alike are investigating the utility of concentrated mesenchymal stem cell suspensions as therapeutic injectables, with the hope of regenerating the damaged tissue site. These cells are seldom used alone, being instead combined with synthetic biomacromolecules, such as branched poly(ethylene glycol) (PEG) polymers, in order to form cross-linked hydrogels postinjection. In this article, we present the results of a detailed experimental and analytical investigation into the impacts of a range of eight-arm PEG polymers, each presenting functional end groups, on the rheological properties of concentrated living cells of mesenchymal origin. Using two-photon confocal microscopy, we confirmed that the aggregates formed by the cells are fractal structures, the dimension of which changed with PEG polymer type addition. From these results and the observed substantial variation in rheological footprint with increasing volume fraction and different PEG polymer type, we propose a number of mechanisms driving such structural changes. Lastly, we derived a modified Krieger-Dougherty model to produce a master curve for the relative viscosity as a function of volume fraction over the range of conditions investigated (including shear stress and PEG polymer type), from which we extract the adhesion force between individual cells within these concentrated suspensions. The outcomes of this study provide new insights into the complex interactions occurring in concentrated mesenchymal cell suspensions when combined with synthetic biomacromolecules commonly used as precursors in tissue engineering hydrogels, highlighting their substantial impacts on the resultant rheological footprint.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Mesenquimais/fisiologia , Polietilenoglicóis/química , Animais , Camundongos , Microscopia Confocal , Células NIH 3T3 , Medicina Regenerativa , Reologia , Estresse Mecânico , Suspensões/química , Engenharia Tecidual
2.
Polymers (Basel) ; 16(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543415

RESUMO

Agarose forms a homogeneous thermoreversible gel in an aqueous solvent above a critical polymer concentration. Contrary to the prevailing consensus, recent confirmations indicate that agarose gels are also stable in non-solvents like acetone and ethanol. A previous study compared gel characterisations and behaviours in water and ethanol, discussing the gelation mechanism. In the current work, the ethanol gel is exchanged with water to explore the potential reversibility of the displacement of water in agarose. Initially, the structure is characterised using 1H NMR in DMSO-d6 and D2O solvents. Subsequently, a very low yield (0.04) of methyl substitution per agarobiose unit is determined. The different gels after stabilisation are characterised using rheology, and their physical properties are compared based on the solvent used. The bound water molecules, acting as plasticizers in aqueous medium, are likely removed during the exchange process with ethanol, resulting in a stronger and more fragile gel. Next, the gel obtained after the second exchange from ethanol back to water is compared with the initial gel prepared in water. This is the first time where such gel has been characterised without undergoing a phase transition when switching from a good solvent to a non-solvent, and vice versa, thereby testing the reversibility of the solvent exchange. Reversibility of this behaviour is demonstrated through swelling and rheology experiments. This study extends the application of agarose in chromatography and electrophoresis.

3.
Data Brief ; 52: 109941, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38260863

RESUMO

The Rayleigh-Plateau instability, a phenomenon of paramount significance in fluid dynamics, finds widespread application in the Continuous InkJet (CIJ) printing process. This study presents a comprehensive dataset comprising experimental investigations of fluid jet breakup phenomena under large-amplitude stimulation conditions using an industrial CIJ print-head from Markem-Imaje. Unlike previous studies, this dataset encompasses a diverse range of experimental conditions, including nine different Newtonian fluids with meticulously measured rheological properties (viscosities, surface tensions and densities). The applied stimulation amplitudes vary from 5V to 45V, representing a substantial span of excitation levels. The experimental setup captures the intricate dynamics of fluid jets subjected to these varying conditions, producing a rich collection of over 5,000 high-resolution images depicting the breakup phenomena. Each amplitude of stimulation and fluid type yields more than 55 distinct images, providing detailed insights into the evolving jet morphologies. To ensure the accuracy and relevance of the dataset, all ejection parameters are rigorously documented and included. The dataset thus serves as a valuable resource for researchers seeking to explore the dynamics of large-amplitude Rayleigh-Plateau instability in CIJ printing. Its comprehensiveness and diversity make it particularly suitable for the application of novel machine learning and deep-learning approaches, enabling the study of jet morphological evolution beyond the confines of classical Rayleigh's theory. This dataset holds promise for advancing our understanding of fluid jet dynamics and enhancing the efficiency and quality of CIJ printing processes.

4.
Biomacromolecules ; 14(12): 4388-97, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24255972

RESUMO

With the rapidly growing interest in the use of mesenchymal stromal cells (MSCs) for cell therapy and regenerative medicine applications, either alone as an injected suspension, or dispersed within injectable hydrogel delivery systems, greater understanding of the structure-function-property characteristics of suspensions of adhesion-dependent mesenchymal cells is required. In this paper, we present the results of an experimental study into the flow behavior of concentrated suspensions of living cells of mesenchymal origin (fibroblasts) over a wide range of cell concentrations, with and without the addition of hyaluronic acid (HA), a commonly utilized biomolecule in injectable hydrogel formulations. We characterize the change in the shear viscosity as a function of shear stress and shear rate for cell volume fractions varying from 20 to 60%. We show that high volume fraction suspensions of living mesenchymal cells, known to be capable of homotypic interactions, exhibit highly complex but reproducible rheological footprints, including yield stress, shear thinning and shear-induced fracture behaviors. We show that with the addition of HA, we can significantly modify and tailor the rheology of these cell suspensions at all volume fractions. Using FACS and confocal imaging, we show that the observed effect of HA addition is due to a significantly modulation in the formation of cellular aggregates in these suspensions, and thus the resultant volume spanning network. Considering the aggregates as fractal structures, we show that by taking into account the changes in volume fractions with shear, we are able to plot a master curve for the range of conditions investigated and extract from it the average adhesion force between individual cells, across a population of millions of cells. The outcomes of this study not only provide new insight into the complexity of the flow behaviors of concentrated, adhesive mesenchymal cell suspensions, and their sensitivity to associative biomacromolecule addition, but also a novel, rapid method by which to measure the average adhesion force between individual cells, and the impacts of biomacromolecules on this important parameter.


Assuntos
Fibroblastos/fisiologia , Ácido Hialurônico/química , Animais , Adesão Celular , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Células NIH 3T3 , Medicina Regenerativa , Resistência ao Cisalhamento , Viscosidade
5.
Polymers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177308

RESUMO

Agarose is known to form a homogeneous thermoreversible gel in an aqueous medium over a critical polymer concentration. The solid-liquid phase transitions are thermoreversible but depend on the molecular structure of the agarose sample tested. The literature has mentioned that agarose gels could remain stable in non-solvents such as acetone or ethanol. However, there has been no characterization of their behavior nor a comparison with the gels formed in a good solvent such as water. In the first step of this article, the structure was characterized using 1H and 13C NMR in both D2O and DMSO-d6 solvents. DMSO is a solvent that dissolves agarose regardless of the temperature. First, we have determined a low yield of methyl substitution on the D-galactose unit. Then, the evolution of the 1H NMR spectrum was monitored as a function of temperature during both increasing and decreasing temperature processes, ranging from 25 to 80 °C. A large thermal hysteresis was obtained and discussed, which aided in the interpretation of rheological behavior. The hysteresis of NMR signals is related to the mobility of the agarose chains, which follows the sol/gel transition depending on the chains' association with H-bonds between water and the -OH groups of agarose for tightly bound water and agarose/agarose in chain packing. In the second step of the study, the water in the agarose gel was exchanged with ethanol, which is a non-solvent for agarose. The resulting gel was stable, and its properties were characterized using rheology and compared to its behavior in aqueous media. The bound water molecules that act as plasticizers were likely removed during the exchange process, resulting in a stronger and more brittle gel in ethanol, with higher thermal stability compared to the aqueous gel. It is the first time that such gel is characterized without phase transition when passing from a good solvent to a non-solvent. This extends the domains of application of agarose.

6.
Data Brief ; 42: 108215, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35572797

RESUMO

The so-called Rayleigh-Plateau instability of fluid jets has been widely studied and is extensively used in the Continuous InkJet (CIJ) printing process. The present dataset contains the numerically-generated interfaces of Newtonian fluids jets in CIJ jetting conditions for low to moderately high stimulation amplitudes. We used Basilisk, an open-source Computational Fluid Dynamics (CFD) software specialized in multiphase flow to compute thousands of jets of fluids for Reynolds numbers ranging from 100 to 1000. The dataset gives raw data of CFD simulations liquid-air interfaces, for each Reynolds - stimulation amplitude pair. The present 10 GB dataset contains ≈ 110000 interfaces which allows to use novel machine learning and deep-learning approaches to explore jet morphologies evolution that can't be addressed with the classical Rayleigh's theory.

7.
Front Chem ; 7: 625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620423

RESUMO

Structurally modified hydroxyl functionalized pyridinium ionic liquids (ILs), liquid at room temperature, were synthesized and characterized. Alkylated N-(2-hydroxyethyl)-pyridinium ILs were prepared from alkylpyridines via corresponding bromide salts by N-alkylation (65-93%) and final anion exchange (75-96%). Pyridinium-alkylation strongly influenced the IL physicochemical and electrochemical properties. Experimental values for the ILs physicochemical properties (density, viscosity, conductivity, and thermal decomposition temperature), were in good agreement with corresponding predicted values obtained by theoretical calculations. The pyridinium ILs have electrochemical window of 3.0-5.4 V and were thermally stable up to 405°C. The IL viscosity and density were measured over a wide temperature range (25-80°C). Pyridine alkyl-substitution strongly affected the partial positive charge on the nitrogen atom of the pyridinium cations, as shown by charge distribution calculations. On-going studies on Mg complexes of the new ILs demonstrate promising properties for high current density electrodeposition of magnesium.

8.
Polymers (Basel) ; 10(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30961129

RESUMO

Previous investigations were conducted on two concentrations of DNA solution: 4 mg/mL, for which it has been shown that no supramolecular organization is induced under flow at low shear rates; and 10 mg/mL, in which a liquid crystalline-type texture is formed under flow at low shear rates, attesting to an orientation of pre-organized chains. Rheological experiments are discussed and their results supported by small-angle X-ray scattering (SAXS) and flow birefringence visualization experiments. Scattering from polyelectrolytes has a characteristic signal, which is here observed in SAXS, showing a strong correlation peak between charged chains in water, for both concentrations. This peak is weaker in the presence of 0.01 M NaCl and suppressed in salt excess at 0.1 M NaCl. No plateau in the σ( γ ˙ ) plot was observed in analysis of rheological experiments on low DNA concentration (4 mg/mL). As typically observed in polyelectrolyte systems both the dynamic moduli and shear viscosity were higher in water as electrostatic forces dominate, than in the presence of salt, especially at low shear rates. The rheological results for concentrations of 0.01 M NaCl are lower than in water as expected due to partial screening of electrostatic repulsions. Rheological data for concentrations of 0.1 M NaCl are unexpected. Electrostatic forces are partially screened in the low salt concentration, leading to a drop in the rheological values. For high salt concentration there are no longer interchain repulsions and so steric interactions dominate within the entangled network leading to the subsequent increase in rheological parameters. Regardless of the solvent, at high shear rates the solutions are birefringent. In the 10 mg/mL case, under flow, textures are formed at relatively low shear rate before all the chains align going to a pseudonematic liquid crystalline phase at high shear rate. The electrostatic repulsion between semi-rigid chains induces a correlation between the chains leading to an electrostatic pseudo-gel in water and loosely in 0.01 M NaCl at low stress applied. To the best of our knowledge, this is the first time that such behavior is observed. In 0.1 M NaCl, DNA behavior resembles the corresponding neutral polymer as expected for polyelectrolyte in salt excess, exhibiting a yield stress. When texture appears in water and in 0.01 M NaCl, a critical transition is observed in rheological curves, where the viscosity decreases sharply at a given critical shear stress corresponding to a plateau in the σ( γ ˙ ) plot also observed in creep transient experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA