Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 17(6): 724-731, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820990

RESUMO

Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.


Assuntos
Bactérias/efeitos dos fármacos , Hidrogéis/farmacologia , Alginatos/química , Antibacterianos/farmacologia , Bactérias/genética , Materiais Biocompatíveis , Bioengenharia , DNA Bacteriano/química , DNA Bacteriano/genética , Monitoramento Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Heme/química , Metais Pesados/química , Organismos Geneticamente Modificados , Percepção de Quorum , Rios , Poluentes da Água/química
2.
Nature ; 518(7537): 89-93, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25607356

RESUMO

Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that impart genetic isolation by impeding horizontal gene transfer and now depend on the use of synthetic biochemical building blocks, advancing orthogonal barriers between engineered organisms and the environment.


Assuntos
Aminoácidos/síntese química , Aminoácidos/farmacologia , Contenção de Riscos Biológicos/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Viabilidade Microbiana/efeitos dos fármacos , Biologia Sintética/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Domínio Catalítico/genética , Códon/genética , Meios de Cultura/química , Meios de Cultura/farmacologia , Meio Ambiente , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Transferência Genética Horizontal/genética , Genes Essenciais/genética , Código Genético/genética , Engenharia Genética/métodos , Genoma Bacteriano/genética , Viabilidade Microbiana/genética , Dados de Sequência Molecular , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Organismos Geneticamente Modificados/metabolismo , Fatores de Terminação de Peptídeos/genética , Fenilalanina/química , Fenilalanina/metabolismo , Multimerização Proteica/genética , RNA de Transferência/genética
3.
Nucleic Acids Res ; 43(3): 1945-54, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25567985

RESUMO

Genetically modified organisms (GMOs) are commonly used to produce valuable compounds in closed industrial systems. However, their emerging applications in open clinical or environmental settings require enhanced safety and security measures. Intrinsic biocontainment, the creation of bacterial hosts unable to survive in natural environments, remains a major unsolved biosafety problem. We developed a new biocontainment strategy containing overlapping 'safeguards'-engineered riboregulators that tightly control expression of essential genes, and an engineered addiction module based on nucleases that cleaves the host genome-to restrict viability of Escherichia coli cells to media containing exogenously supplied synthetic small molecules. These multilayered safeguards maintain robust growth in permissive conditions, eliminate persistence and limit escape frequencies to <1.3 × 10(-12). The staged approach to safeguard implementation revealed mechanisms of escape and enabled strategies to overcome them. Our safeguarding strategy is modular and employs conserved mechanisms that could be extended to clinically or industrially relevant organisms and undomesticated species.


Assuntos
Escherichia coli/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Clonagem Molecular , Técnicas de Cocultura , Meios de Cultura , Escherichia coli/crescimento & desenvolvimento , Recombinação Genética
5.
Nat Biotechnol ; 33(12): 1272-1279, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26571098

RESUMO

Expansion of the genetic code with nonstandard amino acids (nsAAs) has enabled biosynthesis of proteins with diverse new chemistries. However, this technology has been largely restricted to proteins containing a single or few nsAA instances. Here we describe an in vivo evolution approach in a genomically recoded Escherichia coli strain for the selection of orthogonal translation systems capable of multi-site nsAA incorporation. We evolved chromosomal aminoacyl-tRNA synthetases (aaRSs) with up to 25-fold increased protein production for p-acetyl-L-phenylalanine and p-azido-L-phenylalanine (pAzF). We also evolved aaRSs with tunable specificities for 14 nsAAs, including an enzyme that efficiently charges pAzF while excluding 237 other nsAAs. These variants enabled production of elastin-like-polypeptides with 30 nsAA residues at high yields (∼50 mg/L) and high accuracy of incorporation (>95%). This approach to aaRS evolution should accelerate and expand our ability to produce functionalized proteins and sequence-defined polymers with diverse chemistries.

6.
Science ; 342(6156): 357-60, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24136966

RESUMO

We describe the construction and characterization of a genomically recoded organism (GRO). We replaced all known UAG stop codons in Escherichia coli MG1655 with synonymous UAA codons, which permitted the deletion of release factor 1 and reassignment of UAG translation function. This GRO exhibited improved properties for incorporation of nonstandard amino acids that expand the chemical diversity of proteins in vivo. The GRO also exhibited increased resistance to T7 bacteriophage, demonstrating that new genetic codes could enable increased viral resistance.


Assuntos
Aminoácidos/genética , Bacteriófago T7/fisiologia , Códon de Terminação/genética , Escherichia coli/genética , Escherichia coli/virologia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/virologia , Substituição de Aminoácidos/genética , Proteínas de Escherichia coli/genética , Engenharia Genética , Genoma Bacteriano , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/genética
7.
FEBS Lett ; 586(20): 3716-22, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22982858

RESUMO

Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park et al., 2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where seven UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability.


Assuntos
Códon de Terminação/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Deleção de Genes , Fatores de Terminação de Peptídeos/deficiência , Fatores de Terminação de Peptídeos/genética , Fosfosserina/metabolismo , Biossíntese de Proteínas/genética , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Genoma Bacteriano/genética , Dados de Sequência Molecular , Fenótipo , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA