RESUMO
Non-genetic variations derived from expression noise at transcript or protein levels can result in cell-to-cell heterogeneity within an isogenic population. Although cells have developed strategies to reduce noise in some cellular functions, this heterogeneity can also facilitate varying levels of regulation and provide evolutionary benefits in specific environments. Despite several general characteristics of cellular noise having been revealed, the detailed molecular pathways underlying noise regulation remain elusive. Here, we established a dual-fluorescent reporter system in Saccharomyces cerevisiae and performed experimental evolution to search for mutations that increase expression noise. By analyzing evolved cells using bulk segregant analysis coupled with whole-genome sequencing, we identified the histone deacetylase Hos2 as a negative noise regulator. A hos2 mutant down-regulated multiple ribosomal protein genes and exhibited partially compromised protein translation, indicating that Hos2 may regulate protein expression noise by modulating the translation machinery. Treating cells with translation inhibitors or introducing mutations into several Hos2-regulated ribosomal protein genes-RPS9A, RPS28B and RPL42A-enhanced protein expression noise. Our study provides an effective strategy for identifying noise regulators and also sheds light on how cells regulate non-genetic variation through protein translation.
Assuntos
Regulação Fúngica da Expressão Gênica , Histona Desacetilases , Biossíntese de Proteínas , Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Mutação , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
The fidelity of splice site selection is critical for proper gene expression. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is challenging considering the low complexity of the 3'SS consensus sequence YAG. Here, we show that absence of the Prp18p splicing factor results in genome-wide activation of alternative 3'SS in S. cerevisiae, including highly unusual non-YAG sequences. Usage of these non-canonical 3'SS in the absence of Prp18p is enhanced by upstream poly(U) tracts and by their potential to interact with the first intronic nucleoside, allowing them to dock in the spliceosome active site instead of the normal 3'SS. The role of Prp18p in 3'SS fidelity is facilitated by interactions with Slu7p and Prp8p, but cannot be fulfilled by Slu7p, identifying a unique role for Prp18p in 3'SS fidelity. This fidelity function is synergized by the downstream proofreading activity of the Prp22p helicase, but is independent from another late splicing helicase, Prp43p. Our results show that spliceosomes exhibit remarkably relaxed 3'SS sequence usage in the absence of Prp18p and identify a network of spliceosomal interactions centered on Prp18p which are required to promote the fidelity of the recognition of consensus 3'SS sequences.
Assuntos
Sítios de Splice de RNA , Saccharomyces cerevisiae , Processamento Alternativo , Splicing de RNA , Fatores de Processamento de RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
3'-end poly(A)+ sequencing is an efficient and economical method for global measurement of mRNA levels and alternative poly(A) site usage. A common method involves oligo(dT)19V reverse-transcription (RT)-based library preparation and high-throughput sequencing with a custom primer ending in (dT)19. While the majority of library products have the first sequenced nucleotide reflect the bona fide poly(A) site (pA), a substantial fraction of sequencing reads arise from various mis-priming events. These can result in incorrect pA site calls anywhere from several nucleotides downstream to several kilobases upstream from the bona fide pA site. While these mis-priming events can be mitigated by increasing annealing stringency (e.g. increasing temperature from 37⯰C to 42⯰C), they still persist at an appreciable level (â¼10%) and computational methods must be used to prevent artifactual calls. Here we present a bioinformatics workflow for precise mapping of poly(A)+ 3' ends and handling of artifacts due to oligo(dT) mis-priming and sample polymorphisms. We test pA site calling with three different read mapping programs (STAR, BWA, and BBMap), and show that the way in which each handles terminal mismatches and soft clipping has a substantial impact on identifying correct pA sites, with BWA requiring the least post-processing to correct artifacts. We demonstrate the use of this pipeline for mapping pA sites in the model eukaryote S. cerevisiae, and further apply this technology to non-polyadenylated transcripts by employing in vitro polyadenylation prior to library prep (IVP-seq). As proof of principle, we show that a fraction of tRNAs harbor CCU 3' tails instead of the canonical CCA tail, and globally identify 3' ends of splicing intermediates arising from inefficiently spliced transcripts.
Assuntos
Anotação de Sequência Molecular/métodos , RNA-Seq/métodos , Regiões 3' não Traduzidas/genética , Biologia Computacional/métodos , Nucleotídeos/genética , Poli A/genética , Poliadenilação/genética , Splicing de RNA , RNA Fúngico/genética , Saccharomyces cerevisiae/genéticaRESUMO
To date, 12 protein lysine methyltransferases that modify translational elongation factors and ribosomal proteins (Efm1-7 and Rkm 1-5) have been identified in the yeast Saccharomyces cerevisiae. Of these 12, five (Efm1 and Efm4-7) appear to be specific to elongation factor 1A (EF1A), the protein responsible for bringing aminoacyl-tRNAs to the ribosome. In S. cerevisiae, the functional implications of lysine methylation in translation are mostly unknown. In this work, we assessed the physiological impact of disrupting EF1A methylation in a strain where four of the most conserved methylated lysine sites are mutated to arginine residues and in strains lacking either four or five of the Efm lysine methyltransferases specific to EF1A. We found that loss of EF1A methylation was not lethal but resulted in reduced growth rates, particularly under caffeine and rapamycin stress conditions, suggesting EF1A interacts with the TORC1 pathway, as well as altered sensitivities to ribosomal inhibitors. We also detected reduced cellular levels of the EF1A protein, which surprisingly was not reflected in its stability in vivo. We present evidence that these Efm methyltransferases appear to be largely devoted to the modification of EF1A, finding no evidence of the methylation of other substrates in the yeast cell. This work starts to illuminate why one protein can need five different methyltransferases for its functions and highlights the resilience of yeast to alterations in their posttranslational modifications.
Assuntos
Lisina/metabolismo , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Genome editing technologies have the potential to transform our understanding of how genetic variation gives rise to complex traits through the systematic engineering and phenotypic characterization of genetic variants. However, there has yet to be a system with sufficient efficiency, fidelity, and throughput to comprehensively identify causal variants at the genome scale. Here we explored the ability of templated CRISPR editing systems to install natural variants genome-wide in budding yeast. We optimized several approaches to enhance homology-directed repair (HDR) with donor DNA templates, including donor recruitment to target sites, single-stranded donor production by bacterial retrons, and in vivo plasmid assembly. We uncovered unique advantages of each system that we integrated into a single superior system named MAGESTIC 3.0. We used MAGESTIC 3.0 to dissect causal variants residing in 112 quantitative trait loci across 32 environmental conditions, revealing an enrichment for missense variants and loci with multiple causal variants. MAGESTIC 3.0 will facilitate the functional analysis of the genome at single-nucleotide resolution and provides a roadmap for improving template-based genome editing systems in other organisms.
RESUMO
Interactions between genetic perturbations and segregating loci can cause perturbations to show different phenotypic effects across genetically distinct individuals. To study these interactions on a genome scale in many individuals, we used combinatorial DNA barcode sequencing to measure the fitness effects of 8046 CRISPRi perturbations targeting 1721 distinct genes in 169 yeast cross progeny (or segregants). We identified 460 genes whose perturbation has different effects across segregants. Several factors caused perturbations to show variable effects, including baseline segregant fitness, the mean effect of a perturbation across segregants, and interacting loci. We mapped 234 interacting loci and found four hub loci that interact with many different perturbations. Perturbations that interact with a given hub exhibit similar epistatic relationships with the hub and show enrichment for cellular processes that may mediate these interactions. These results suggest that an individual's response to perturbations is shaped by a network of perturbation-locus interactions that cannot be measured by approaches that examine perturbations or natural variation alone.
Assuntos
Epistasia Genética , Genoma Fúngico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Variação Genética , Aptidão Genética , Sistemas CRISPR-Cas , Fenótipo , Código de Barras de DNA TaxonômicoRESUMO
Interactions between genetic perturbations and segregating loci can cause perturbations to show different phenotypic effects across genetically distinct individuals. To study these interactions on a genome scale in many individuals, we used combinatorial DNA barcode sequencing to measure the fitness effects of 7,700 CRISPRi perturbations targeting 1,712 distinct genes in 169 yeast cross progeny (or segregants). We identified 460 genes whose perturbation has different effects across segregants. Several factors caused perturbations to show variable effects, including baseline segregant fitness, the mean effect of a perturbation across segregants, and interacting loci. We mapped 234 interacting loci and found four hub loci that interact with many different perturbations. Perturbations that interact with a given hub exhibit similar epistatic relationships with the hub and show enrichment for cellular processes that may mediate these interactions. These results suggest that an individual's response to perturbations is shaped by a network of perturbation-locus interactions that cannot be measured by approaches that examine perturbations or natural variation alone.
RESUMO
We present Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a scalable platform producing autologous organotypic iPS cell-derived induced skin composite (iSC) grafts for definitive treatment. Clinical-grade manufacturing integrates CRISPR-mediated genetic correction with reprogramming into one step, accelerating derivation of COL7A1-edited iPS cells from patients. Differentiation into epidermal, dermal and melanocyte progenitors is followed by CD49f-enrichment, minimizing maturation heterogeneity. Mouse xenografting of iSCs from four patients with different mutations demonstrates disease modifying activity at 1 month. Next-generation sequencing, biodistribution and tumorigenicity assays establish a favorable safety profile at 1-9 months. Single cell transcriptomics reveals that iSCs are composed of the major skin cell lineages and include prominent holoclone stem cell-like signatures of keratinocytes, and the recently described Gibbin-dependent signature of fibroblasts. The latter correlates with enhanced graftability of iSCs. In conclusion, DEBCT overcomes manufacturing and safety roadblocks and establishes a reproducible, safe, and cGMP-compatible therapeutic approach to heal lesions of DEB patients.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Colágeno Tipo VII , Epidermólise Bolhosa Distrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Epidermólise Bolhosa Distrófica/terapia , Epidermólise Bolhosa Distrófica/genética , Animais , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Fibroblastos/metabolismo , Diferenciação Celular , Queratinócitos/metabolismo , Queratinócitos/transplante , Pele/metabolismo , Transplante Autólogo , Masculino , Mutação , Feminino , Transplante de Pele/métodos , Edição de Genes/métodos , Sistemas CRISPR-CasRESUMO
The fidelity of splice site selection is thought to be critical for proper gene expression and cellular fitness. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is a daunting task considering the low complexity of the 3'SS consensus sequence YAG. Here we show that inactivating the near-essential splicing factor Prp18p results in a global activation of alternative 3'SS, many of which harbor sequences that highly diverge from the YAG consensus, including some highly unusual non-AG 3'SS. We show that the role of Prp18p in 3'SS fidelity is promoted by physical interactions with the essential splicing factors Slu7p and Prp8p and synergized by the proofreading activity of the Prp22p helicase. Strikingly, structure-guided point mutations that disrupt Prp18p-Slu7p and Prp18p-Prp8p interactions mimic the loss of 3'SS fidelity without any impact on cellular growth, suggesting that accumulation of incorrectly spliced transcripts does not have a major deleterious effect on cellular viability. These results show that spliceosomes exhibit remarkably relaxed fidelity in the absence of Prp18p, and that new 3'SS sampling can be achieved genome-wide without a major negative impact on cellular fitness, a feature that could be used during evolution to explore new productive alternative splice sites.
RESUMO
Key to our ability to increase recombinant protein production through secretion is a better understanding of the pathways that interact to translate, process and export mature proteins to the surrounding environment, including the supporting cellular machinery that supplies necessary energy and building blocks. By combining droplet microfluidic screening with large-scale CRISPR libraries that perturb the expression of the majority of coding and non-coding genes in S. cerevisiae, we identified 345 genes for which an increase or decrease in gene expression resulted in increased secretion of α-amylase. Our results show that modulating the expression of genes involved in the trafficking of vesicles, endosome to Golgi transport, the phagophore assembly site, the cell cycle and energy supply improve α-amylase secretion. Besides protein-coding genes, we also find multiple long non-coding RNAs enriched in the vicinity of genes associated with endosomal, Golgi and vacuolar processes. We validated our results by overexpressing or deleting selected genes, which resulted in significant improvements in α-amylase secretion. The advantages, in terms of precision and speed, inherent to CRISPR based perturbations, enables iterative testing of new strains for increased protein secretion.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Amilases/metabolismo , Microfluídica , alfa-Amilases/genética , alfa-Amilases/metabolismoRESUMO
Background: Gene editing in induced pluripotent stem (iPS) cells has been hailed to enable new cell therapies for various monogenetic diseases including dystrophic epidermolysis bullosa (DEB). However, manufacturing, efficacy and safety roadblocks have limited the development of genetically corrected, autologous iPS cell-based therapies. Methods: We developed Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a new generation GMP-compatible (cGMP), reproducible, and scalable platform to produce autologous clinical-grade iPS cell-derived organotypic induced skin composite (iSC) grafts to treat incurable wounds of patients lacking type VII collagen (C7). DEBCT uses a combined high-efficiency reprogramming and CRISPR-based genetic correction single step to generate genome scar-free, COL7A1 corrected clonal iPS cells from primary patient fibroblasts. Validated iPS cells are converted into epidermal, dermal and melanocyte progenitors with a novel 2D organoid differentiation protocol, followed by CD49f enrichment and expansion to minimize maturation heterogeneity. iSC product characterization by single cell transcriptomics was followed by mouse xenografting for disease correcting activity at 1 month and toxicology analysis at 1-6 months. Culture-acquired mutations, potential CRISPR-off targets, and cancer-driver variants were evaluated by targeted and whole genome sequencing. Findings: iPS cell-derived iSC grafts were reproducibly generated from four recessive DEB patients with different pathogenic mutations. Organotypic iSC grafts onto immune-compromised mice developed into stable stratified skin with functional C7 restoration. Single cell transcriptomic characterization of iSCs revealed prominent holoclone stem cell signatures in keratinocytes and the recently described Gibbin-dependent signature in dermal fibroblasts. The latter correlated with enhanced graftability. Multiple orthogonal sequencing and subsequent computational approaches identified random and non-oncogenic mutations introduced by the manufacturing process. Toxicology revealed no detectable tumors after 3-6 months in DEBCT-treated mice. Interpretation: DEBCT successfully overcomes previous roadblocks and represents a robust, scalable, and safe cGMP manufacturing platform for production of a CRISPR-corrected autologous organotypic skin graft to heal DEB patient wounds.
RESUMO
In diploid species, genetic loci can show additive, dominance, and epistatic effects. To characterize the contributions of these different types of genetic effects to heritable traits, we use a double barcoding system to generate and phenotype a panel of ~200,000 diploid yeast strains that can be partitioned into hundreds of interrelated families. This experiment enables the detection of thousands of epistatic loci, many whose effects vary across families. Here, we show traits are largely specified by a small number of hub loci with major additive and dominance effects, and pervasive epistasis. Genetic background commonly influences both the additive and dominance effects of loci, with multiple modifiers typically involved. The most prominent dominance modifier in our data is the mating locus, which has no effect on its own. Our findings show that the interplay between additivity, dominance, and epistasis underlies a complex genotype-to-phenotype map in diploids.
Assuntos
Diploide , Saccharomyces cerevisiae , Epistasia Genética , Exercício Físico , Humanos , Modelos Genéticos , Fenótipo , Saccharomyces cerevisiae/genéticaRESUMO
CRISPR-Cas9 genome editing technology is widely used in scientific research and biotechnology. As this technology becomes a staple tool in life sciences research, it is increasingly important to incorporate it into biology curricula to train future scientists. To demonstrate the molecular underpinnings and some limitations of CRISPR-based gene editing, we designed a laboratory module to accompany a discussion-based course on genome editing for college and advanced high school biology students. The laboratory module uses CRISPR-Cas9 to target and inactivate the ADE2 gene in Saccharomyces cerevisiae so as to give red colonies, employing an inexpensive yeast model system with a phenotypic readout that is easily detectable without specialized equipment. Students begin by accessing the yeast ADE2 sequence in a genome database, applying their understanding of Cas9 activity to design guide RNA (gRNA) sequences, using a CRISPR analysis tool to compare predicted on- and off-target effects of various gRNAs, and presenting and explaining their choice of an optimal gRNA to disrupt the ADE2 gene. They then conduct yeast transformations using Cas9 and preselected gRNA plasmids with or without donor templates to explore the importance of DNA repair pathways in genome editing. Lastly, they analyze the observed editing rates across different gRNAs targeting ADE2, leading to a discussion of editing efficiency. This module engages students in experimental design, provides hands-on experience with CRISPR-Cas9 gene editing and collaborative data analysis, and stimulates discussion on the uses and limitations of CRISPR-based gene editing technology.
RESUMO
Antimicrobial resistance (AMR) is spreading worldwide and keeps evolving to adapt to antibiotics, causing increasing threats in clinics, which necessitates the exploration of antimicrobial agents for not only killing of resistant cells but also prevention of AMR progression. However, so far, there has been no effective approach. Herein, we designed lanthanum hydroxide and graphene oxide nanocomposites (La@GO) to confer a synergistic bactericidal effect in all tested resistant strains. More importantly, long-term exposure of E. coli (AMR) to subminimum inhibitory concentrations of La@GO does not trigger detectable secondary resistance, while conventional antibiotics and silver nanoparticles lead to a 16- to 64-fold increase in tolerance. The inability of E. coli to evolve resistance to La@GO is likely due to a distinctive extracellular multitarget invasion killing mechanism involving lipid dephosphorylation, lipid peroxidation, and peptidoglycan disruption. Overall, our results highlight La@GO nanocomposites as a promising solution to combating resistant bacteria without inducing the evolution of AMR.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Grafite/química , Nanopartículas Metálicas/química , Nanocompostos/química , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Lantânio/química , Peroxidação de Lipídeos , Testes de Sensibilidade Microbiana , Prata/químicaRESUMO
Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR-Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.
Assuntos
Código de Barras de DNA Taxonômico/métodos , Edição de Genes/métodos , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Biotecnologia , Sistemas CRISPR-Cas , DNA Fúngico/genética , Genoma Fúngico , Recombinação Homóloga , Proteínas de Transferência de Fosfolipídeos/genética , Plasmídeos/genética , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Copper formulations have been used for decades for antimicrobial and antifouling applications. With the development of nanoformulations of copper that are more effective than their ionic and microsized analogues, a key regulatory question is whether these materials should be treated as new or existing materials. To address this issue, here we compare the magnitude and mechanisms of toxicity of a series of Cu species (at concentration ranging from 2 to 250 µg/mL), including nano Cu, nano CuO, nano Cu(OH)2 (CuPro and Kocide), micro Cu, micro CuO, ionic Cu(2+) (CuCl2 and CuSO4) in two species of bacteria (Escherichia coli and Lactobacillus brevis). The primary size of the particles studied ranged from 10 nm to 10 µm. Our results reveal that Cu and CuO nanoparticles (NPs) are more toxic than their microsized counterparts at the same Cu concentration, with toxicities approaching those of the ionic Cu species. Strikingly, these NPs showed distinct differences in their mode of toxicity when compared to the ionic and microsized Cu, highlighting the unique toxicity properties of materials at the nanoscale. In vitro DNA damage assays reveal that both nano Cu and microsized Cu are capable of causing complete degradation of plasmid DNA, but electron tomography results show that only nanoformulations of Cu are internalized as intact intracellular particles. These studies suggest that nano Cu at the concentration of 50 µg/mL may have unique genotoxicity in bacteria compared to ionic and microsized Cu.