Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
FASEB J ; 33(12): 13527-13545, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560862

RESUMO

Cholera toxin B subunit (CTB) exhibits broad-spectrum biologic activity upon mucosal administration. Here, we found that a recombinant CTB containing an endoplasmic reticulum (ER) retention motif (CTB-KDEL) induces colon epithelial wound healing in colitis via the activation of an unfolded protein response (UPR) in colon epithelial cells. In a Caco2 cell wound healing model, CTB-KDEL, but not CTB or CTB-KDE, facilitated cell migration via interaction with the KDEL receptor, localization in the ER, UPR activation, and subsequent TGF-ß signaling. Inhibition of the inositol-requiring enzyme 1/X-box binding protein 1 arm of UPR abolished the cell migration effect of CTB-KDEL, indicating that the pathway is indispensable for the activity. CTB-KDEL's capacity to induce UPR and epithelial restitution or wound healing was corroborated in a dextran sodium sulfate-induced acute colitis mouse model. Furthermore, CTB-KDEL induced a UPR, up-regulated wound healing pathways, and maintained viable crypts in colon explants from patients with inflammatory bowel disease (IBD). In summary, CTB-KDEL exhibits unique wound healing effects in the colon that are mediated by its localization to the ER and subsequent activation of UPR in epithelial cells. The results provide implications for a novel therapeutic approach for mucosal healing, a significant unmet need in IBD treatment.-Royal, J. M., Oh, Y. J., Grey, M. J., Lencer, W. I., Ronquillo, N., Galandiuk, S., Matoba, N. A modified cholera toxin B subunit containing an ER retention motif enhances colon epithelial repair via an unfolded protein response.


Assuntos
Toxina da Cólera/farmacologia , Colite/tratamento farmacológico , Retículo Endoplasmático/metabolismo , Células Epiteliais/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Resposta a Proteínas não Dobradas , Cicatrização/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Adulto , Idoso , Motivos de Aminoácidos , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
2.
Process Biochem ; 101: 42-49, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33304198

RESUMO

Here we describe refined methods for the isolation and detection of a KDEL-tagged, plant-produced recombinant cholera toxin B subunit (CTB) that exhibits unique mucosal wound healing activity. The protein was transiently overexpressed in Nicotiana benthamiana, which generates some C-terminal KDEL truncated molecular species that are deficient in epithelial repair activity. With a new CHT chromatographical method described herein, these product-derived impurities were successfully separated from CTB with the intact KDEL sequence, as confirmed by mass spectrometry. In addition, an immunoassay capable of specifically detecting GM1 ganglioside-binding CTB with intact KDEL sequences was developed. Coupled together, these methods will aid in the quality control of KDEL-attached CTB produced in plant-based manufacturing systems towards a novel topical biotherapeutic for the treatment of acute and chronic mucosal inflammation.

3.
Pharmaceutics ; 13(4)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919585

RESUMO

Epicertin (EPT) is a recombinant variant of the cholera toxin B subunit, modified with a C-terminal KDEL endoplasmic reticulum retention motif. EPT has therapeutic potential for ulcerative colitis treatment. Previously, orally administered EPT demonstrated colon epithelial repair activity in dextran sodium sulfate (DSS)-induced acute and chronic colitis in mice. However, the oral dosing requires cumbersome pretreatment with sodium bicarbonate to conserve the acid-labile drug substance while transit through the stomach, hampering its facile application in chronic disease treatment. Here, we developed a solid oral formulation of EPT that circumvents degradation in gastric acid. EPT was spray-dried and packed into enteric-coated capsules to allow for pH-dependent release in the colon. A GM1-capture KDEL-detection ELISA and size-exclusion HPLC indicated that EPT powder maintains activity and structural stability for up to 9 months. Capsule disintegration tests showed that EPT remained encapsulated at pH 1 but was released over 180 min at pH 6.8, the approximate pH of the proximal colon. An acute DSS colitis study confirmed the therapeutic efficacy of encapsulated EPT in C57BL/6 mice upon oral administration without gastric acid neutralization pretreatment compared to vehicle-treated mice (p < 0.05). These results provide a foundation for an enteric-coated oral formulation of spray-dried EPT.

4.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34835277

RESUMO

We developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is stable for up to 12 months at 2-8 or 22-28 °C. Here, we showed that this vaccine induces a strong neutralizing antibody response in K18-hACE2 mice. Furthermore, we demonstrated that immunization protects mice from virus-associated mortality and symptomatic disease. Our data indicated that a sufficient pre-existing pool of neutralizing antibodies is required to restrict SARS-CoV-2 replication upon exposure and prevent induction of inflammatory mediators associated with severe disease. Finally, we identified a potential role for CXCL5 as a protective cytokine in SARS-CoV-2 infection. Our results suggested that disruption of the CXCL5 and CXCL1/2 axis may be important early components of the inflammatory dysregulation that is characteristic of severe cases of COVID-19.

5.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34835278

RESUMO

Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2-8 °C or 22-28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle.

6.
Toxins (Basel) ; 11(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756977

RESUMO

Cholera toxin B subunit (CTB), a non-toxic homopentameric component of Vibrio cholerae holotoxin, is an oral cholera vaccine antigen that induces an anti-toxin antibody response. Recently, we demonstrated that a recombinant CTB variant with a Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention motif (CTB-KDEL) exhibits colon mucosal healing effects that have therapeutic implications for inflammatory bowel disease (IBD). Herein, we investigated the feasibility of CTB-KDEL for the treatment of chronic colitis. We found that weekly oral administration of CTB-KDEL, dosed before or after the onset of chronic colitis, induced by repeated dextran sodium sulfate (DSS) exposure, could significantly reduce disease activity index scores, intestinal permeability, inflammation, and histological signs of chronicity. To address the consequences of immunogenicity, mice (C57BL/6 or C3H/HeJ strains) were pre-exposed to CTB-KDEL then subjected to DSS colitis and CTB-KDEL treatment. While the pre-dosing of CTB-KDEL elicited high-titer anti-drug antibodies (ADAs) of the immunoglobin A (IgA) isotype in the intestine of C57BL/6 mice, the therapeutic effects of CTB-KDEL were similar to those observed in C3H/HeJ mice, which showed minimal ADAs under the same experimental conditions. Thus, the immunogenicity of CTB-KDEL does not seem to impede the protein's mucosal healing efficacy. These results support the development of CTB-KDEL for IBD therapy.


Assuntos
Toxina da Cólera/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Oligopeptídeos , Sinais Direcionadores de Proteínas , Animais , Doença Crônica , Citocinas/metabolismo , Sulfato de Dextrana , Feminino , Imunoglobulina A/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/uso terapêutico
7.
Toxins (Basel) ; 9(12)2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168738

RESUMO

Cholera toxin B subunit (CTB) is a mucosal immunomodulatory protein that induces robust mucosal and systemic antibody responses. This well-known biological activity has been exploited in cholera prevention (as a component of Dukoral® vaccine) and vaccine development for decades. On the other hand, several studies have investigated CTB's immunotherapeutic potential in the treatment of inflammatory diseases such as Crohn's disease and asthma. Furthermore, we recently found that a variant of CTB could induce colon epithelial wound healing in mouse colitis models. This review summarizes the possible mechanisms behind CTB's anti-inflammatory activity and discuss how the protein could impact mucosal inflammatory disease treatment.


Assuntos
Anti-Inflamatórios/uso terapêutico , Toxina da Cólera/uso terapêutico , Fatores Imunológicos/uso terapêutico , Animais , Anti-Inflamatórios/química , Toxina da Cólera/química , Células Epiteliais/efeitos dos fármacos , Humanos , Fatores Imunológicos/química , Mucosa Intestinal/citologia , Estrutura Molecular
8.
Toxins (Basel) ; 7(3): 974-96, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25802972

RESUMO

Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.


Assuntos
Toxina da Cólera/farmacologia , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Toxina da Cólera/biossíntese , Toxina da Cólera/imunologia , Vacinas contra Cólera/química , Vacinas contra Cólera/imunologia , Gangliosídeo G(M1)/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Vibrio cholerae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA