Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Chem Biol ; 18(11): 1263-1269, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36097297

RESUMO

The discovery of ribozymes has inspired exploration of RNA's potential to serve as primordial catalysts in a hypothesized RNA world. Modern oxidoreductase enzymes employ differential binding between reduced and oxidized forms of redox cofactors to alter cofactor reduction potential and enhance the enzyme's catalytic capabilities. The utility of differential affinity has been underexplored as a chemical strategy for RNA. Here we show an RNA aptamer that preferentially binds oxidized forms of flavin over reduced forms and markedly shifts flavin reduction potential by -40 mV, similar to shifts for oxidoreductases. Nuclear magnetic resonance structural analysis revealed π-π and donor atom-π interactions between the aptamer and flavin that cause unfavorable contacts with the electron-rich reduced form, suggesting a mechanism by which the local environment of the RNA-binding pocket drives the observed shift in cofactor reduction potential. It seems likely that primordial RNAs could have used similar strategies in RNA world metabolisms.


Assuntos
Aptâmeros de Nucleotídeos , RNA Catalítico , Aptâmeros de Nucleotídeos/metabolismo , RNA Catalítico/metabolismo , Oxirredução , Flavinas/química , Oxirredutases/metabolismo , RNA/metabolismo
2.
Cancers (Basel) ; 16(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38201510

RESUMO

Estimating the abundance of cell-free DNA (cfDNA) fragments shed from a tumor (i.e., circulating tumor DNA (ctDNA)) can approximate tumor burden, which has numerous clinical applications. We derived a novel, broadly applicable statistical method to quantify cancer-indicative methylation patterns within cfDNA to estimate ctDNA abundance, even at low levels. Our algorithm identified differentially methylated regions (DMRs) between a reference database of cancer tissue biopsy samples and cfDNA from individuals without cancer. Then, without utilizing matched tissue biopsy, counts of fragments matching the cancer-indicative hyper/hypo-methylated patterns within DMRs were used to determine a tumor methylated fraction (TMeF; a methylation-based quantification of the circulating tumor allele fraction and estimate of ctDNA abundance) for plasma samples. TMeF and small variant allele fraction (SVAF) estimates of the same cancer plasma samples were correlated (Spearman's correlation coefficient: 0.73), and synthetic dilutions to expected TMeF of 10-3 and 10-4 had estimated TMeF within two-fold for 95% and 77% of samples, respectively. TMeF increased with cancer stage and tumor size and inversely correlated with survival probability. Therefore, tumor-derived fragments in the cfDNA of patients with cancer can be leveraged to estimate ctDNA abundance without the need for a tumor biopsy, which may provide non-invasive clinical approximations of tumor burden.

3.
RNA Biol ; 8(5): 893-903, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21712651

RESUMO

Repetitive DNA elements in Dolichopoda cave cricket genomes contain extended hammerhead ribozymes that are functional in adult crickets, but that exhibit very low self-cleavage activity in vitro relative to other extended hammerhead ribozymes. We find that the parental ribozyme tends to misfold into alternate secondary structures in vitro, complicating analysis of contributions by specific nucleotides to activity under biologically relevant magnesium concentrations. However, minor sequence alterations that stabilize the active secondary structure, without altering candidate tertiary interacting nucleotides, boosted observed rates more than 50-fold (4.4 ± 1.7 min(-1)) and doubled the cleavage extent (>60%) in submillimolar magnesium. Productive alterations included flipping two base pairs in stem I, lengthening stem I and opening stem III to generate a trans-cleaving ribozyme. Specific peripheral nucleotides involved in tertiary stabilization were then identified through kinetic analysis for a series of sequence variants and by correlating plateau cleavage values with band intensity in native gel electrophoresis. These results demonstrate that conformational heterogeneity governs self-cleavage by the wild-type Dolichopoda hammerhead ribozyme in vitro, and they suggest a strategy for improving activity and enhancing the suitability of HHRz for intracellular and biotechnology applications.


Assuntos
Gryllidae/genética , Conformação de Ácido Nucleico , RNA Catalítico/química , Animais , Variação Genética , Gryllidae/enzimologia , Gryllidae/metabolismo , RNA Catalítico/genética
4.
FEBS Lett ; 585(4): 671-6, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21266177

RESUMO

RNA processing is vital for the high fidelity and diversity of eukaryotic transcriptomes and the encoded proteomes. However, control of RNA processing is not fully established. Σ RNA is a class of conserved large non-coding RNAs (murine Hepcarcin; human MALAT-1) up-regulated in carcinomas. Using antisense technology, we identified that RNA post-transcriptional modification is the most significant global function of Σ RNA. Specifically, processing of the pre-mRNAs of genes including Tissue Factor and Endoglin was altered by hydrolysis of Σ RNA/MALAT-1. These results support the hypothesis that Σ RNA/MALAT-1 is a regulatory molecule exerting roles in RNA post-transcriptional modification.


Assuntos
Carcinoma/metabolismo , Processamento Pós-Transcricional do RNA , RNA Neoplásico/metabolismo , RNA não Traduzido/metabolismo , Processamento Alternativo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Células Cultivadas , Endoglina , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos Antissenso , Precursores de RNA/metabolismo , RNA Longo não Codificante , RNA não Traduzido/antagonistas & inibidores , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Processamento de Serina-Arginina , Tromboplastina/genética , Tromboplastina/metabolismo
5.
RNA ; 13(6): 841-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17456566

RESUMO

Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized "RzB" hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na(+) alone, although the cleavage rates are reduced by more than 1,000-fold relative to the rates observed in Mg(2+) and in transition metal ions. The trivalent cobalt hexammine (CoHex) ion is often used as an exchange-inert analog of hydrated magnesium ion. Trans-cleavage rates exceeded 8 min(-1) in 20 mM CoHex, which promoted cleavage through outersphere interactions. The stimulation of catalysis afforded by the tertiary structural interactions within RzB does not require Mg(2+), unlike other extended hammerhead ribozymes. Site-specific interaction with at least one Mg(2+) ion is suggested by CoHex competition experiments. In the presence of a constant, low concentration of Mg(2+), low concentrations of CoHex decreased the rate by two to three orders of magnitude relative to the rate in Mg(2+) alone. Cleavage rates increased as CoHex concentrations were raised further, but the final fraction cleaved was lower than what was observed in CoHex or Mg(2+) alone. These observations suggest that Mg(2+) and CoHex compete for binding and that they cause misfolded structures when they are together. The results of this study support the existence of an alternate catalytic mechanism used by nondivalent ions (especially CoHex) that is distinct from the one promoted by divalent metal ions, and they imply that divalent metals influence catalysis through a specific nonstructural role.


Assuntos
RNA Catalítico/química , RNA Catalítico/metabolismo , Sequência de Bases , Ligação Competitiva , Cátions/metabolismo , Cobalto/metabolismo , Técnicas In Vitro , Cinética , Magnésio/metabolismo , Modelos Biológicos , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Catalítico/genética , Sódio/metabolismo , Espermidina/metabolismo
6.
RNA ; 12(10): 1846-52, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16912216

RESUMO

In pre-steady-state, fast-quench kinetic analysis, the tertiary-stabilized hammerhead ribozyme "RzB" cleaves its substrate RNA with maximal measured k (obs) values of approximately 3000 min(-1) in 1 mM Mn(2+) and approximately 780 min(-1) in 1 mM Mg(2+) at 37 degrees C (pH 7.4). Apparent pKa for the catalytic general base is approximately 7.8-8.5, independent of the corresponding metal hydrate pKa, suggesting potential involvement of a nucleobase as general base as suggested previously from nucleobase substitution studies. The pH-rate profile is bell-shaped for Cd(2+), for which the general catalytic acid has a pKa of 7.3 +/- 0.1. Simulations of the pH-rate relation suggest a pKa for the general catalytic acid to be approximately 9.5 in Mn(2+) and >9.5 in Mg(2+). The acid pKa's follow the trend in the pKa of the hydrated metal ions but are displaced by approximately 1-2 pH units in the presence of Cd(2+) and Mn(2+). One possible explanation for this trend is direct metal ion coordination with a nucleobase, which then acts as general acid.


Assuntos
RNA Catalítico/metabolismo , Elementos de Transição/metabolismo , Sequência de Bases , Catálise , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Metais Alcalinoterrosos/metabolismo , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Catalítico/química , RNA Catalítico/genética
7.
RNA ; 10(12): 1916-24, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15547137

RESUMO

Tertiary stabilizing motifs (TSMs) between terminal loops or internal bulges facilitate folding of natural hammerhead ribozymes (hRz) under physiological conditions. However, both substrate and enzyme strands contribute nucleotides to the TSMs of trans-cleaving hRz, complicating the design of hRz that exploit TSMs to target specific mRNA. To overcome this limitation, we used SELEX to identify new, artificial TSMs that are less sensitive to sequence context. Nucleotides in loop II or in a bulge within the ribozyme strand of stem I were randomized, while the interaction partner was held constant. All nucleotides of the substrate pair with the ribozyme, minimizing their possible recruitment into the TSM, as such recruitment could constrain choice of candidate target sequences. Six cycles of selection identified cis-acting ribozymes that were active in 100 microM MgCl2. The selected motifs partially recapitulate TSMs found in natural hRz, suggesting that the natural motifs are close to optimal for their respective contexts. Ribozyme "RzB" showed enhanced thermal stability by retaining trans-cleavage activity at 80 degrees C in 10 mM MgCl2 and at 70 degrees C in 2 mM MgCl2. A variant of ribozyme "RzB" with a continuously paired stem 1 rapidly lost activity as temperature was increased. The selected motifs are modular, in that they permit trans-cleavage of several substrates in submillimolar MgCl2, including two substrates derived from the U5 genomic region of HIV-1. The new, artificial tertiary stabilized hRz are thus nearly independent of sequence context and enable for the first time the use of highly active hRz targeting almost any mRNA at physiologically relevant magnesium concentrations.


Assuntos
RNA Catalítico/química , Sequência de Bases , Cátions Bivalentes , Genoma Viral , HIV-1/genética , Temperatura Alta , Técnicas In Vitro , Cloreto de Magnésio , Modelos Moleculares , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo
8.
Biochemistry ; 41(8): 2492-9, 2002 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-11851395

RESUMO

Flavin adenine dinucleotide (FAD) is one of the primary cofactors in biological redox reactions. Designing cofactor-dependent redox ribozymes could benefit from studies of new RNA-cofactor complexes, as would our understanding of ribozyme evolution during an RNA World. We have therefore used the SELEX method to identify RNA aptamers that recognize FAD. Functional analysis of mutant aptamers, S1 nuclease probing, and comparative sequence analysis identified a simple, 45 nt helical structure with several internal bulges as the core-binding element. These aptamers recognize with high specificity the isoalloxazine nucleus of FAD but do not distinguish FAD from FADH(2), nor are they removed from an FAD resin with UMP (which shares a pattern of hydrogen bond donors and acceptors along one face). Thus, these aptamers are structurally and functionally distinct from previously identified FMN and riboflavin aptamers. Circular dichroism data suggest a conformational change in the RNA upon FAD binding. These aptamers require magnesium and are active across a wide pH range (4.5-8.9). Since general acid-base catalysis plays a role in some flavin-dependent redox reaction mechanisms, these aptamers may be particularly well-suited to the design of new redox ribozymes.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , RNA/metabolismo , Sequência de Bases , Ligantes , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA