Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 155(1): 66-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17610965

RESUMO

Many U-snRNAs contain a hypermodified 2,2,7-trimethylguanosine (TMG) cap structure, which is formed by post-transcriptional methylation of an m(7)G cap. At present, little is known about the maturation of U-snRNAs in trypanosomes. The current evidence is consistent with the primary transcript containing an m(7)G moiety, but it is not clear whether the conversion of m(7)G to TMG takes place in the cytoplasm or in the nucleus. To address this issue, we characterized the Trypanosoma brucei homologue of the trimethylguanosine synthase (TbTgs1), a 28kDa protein, which is mainly composed of the conserved catalytic domain and lacks a large N-terminal domain present in higher eukaryotes. A GFP fusion with TbTgs1 revealed that this protein localizes throughout the nucleoplasm, as well as in one or two dots outside the nucleolus and RNAi-mediated downregulation of TbTgs1 suggests that this protein is responsible for hypermethylation of the m(7)G cap of both snRNAs and snoRNAs.


Assuntos
Metiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Capuzes de RNA/metabolismo , Trypanosoma brucei brucei/enzimologia , Animais , Nucléolo Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Metilação , Metiltransferases/genética , Proteínas de Protozoários/genética , RNA Nuclear Pequeno/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Trypanosoma brucei brucei/genética
2.
Mol Biochem Parasitol ; 156(2): 246-54, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17949828

RESUMO

Capping of the pre-mRNA 5' end by addition a monomethylated guanosine cap (m(7)G) is an essential and the earliest modification in the biogenesis of mRNA. The reaction is catalyzed by three enzymes: triphosphatase, guanylyltransferase, and (guanine N-7) methyltransferase. Whereas this modification occurs co-transcriptionally in most eukaryotic organisms, trypanosomatid protozoa mRNAs acquire the m(7)G cap by trans-splicing, which entails the transfer of the capped spliced leader (SL) from the SL RNA to the mRNA. Intriguingly, the genomes of all trypanosomatid protozoa sequenced to date possess two distinct proteins with the signature motifs of guanylyltransferases: TbCGM1 and the previously characterized TbCE1. Here we provide biochemical evidence that TbCgm1 is a capping enzyme. Whereas RNAi-induced downregulation of TbCe1 had no phenotypic consequences, we found that TbCGM1 is essential for trypanosome viability and is required for SL RNA capping. Furthermore, consistent with co-transcriptional addition of the m(7)G cap, chromatin immunoprecipitation revealed recruitment of TbCgm1 to the SL RNA genes.


Assuntos
Nucleotidiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Capuzes de RNA/metabolismo , RNA Líder para Processamento/metabolismo , Trypanosoma brucei brucei/enzimologia , Animais , Sobrevivência Celular , Imunoprecipitação da Cromatina , Inativação Gênica , Genes Essenciais , Ligação Proteica , Interferência de RNA , Especificidade por Substrato , Trypanosoma brucei brucei/genética
3.
Mol Cell Biol ; 24(21): 9610-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15485927

RESUMO

Transcriptional mechanisms remain poorly understood in trypanosomatid protozoa. In particular, there is no knowledge about the function of basal transcription factors, and there is an apparent rarity of promoters for protein-coding genes transcribed by RNA polymerase (Pol) II. Here we describe a Trypanosoma brucei factor related to the TATA-binding protein (TBP). Although this TBP-related factor (TBP-related factor 4 [TRF4]) has about 31% identity to the TBP core domain, several key residues involved in TATA box binding are not conserved. Depletion of the T. brucei TRF4 (TbTRF4) by RNA interference revealed an essential role in RNA Pol I, II, and III transcription. Using chromatin immunoprecipitation, we further showed that TRF4 is recruited to the Pol I-transcribed procyclic acidic repetitive genes, Pol II-transcribed spliced leader RNA genes, and Pol III-transcribed U-snRNA and 7SL RNA genes, thus supporting a role for TbTRF4 in transcription performed by all three nuclear RNA polymerases. Finally, a search for TRF4 binding sites in the T. brucei genome led to the identification of such sites in the 3' portion of certain protein-coding genes, indicating a unique aspect of Pol II transcription in these organisms.


Assuntos
Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Inativação Gênica , Genes Essenciais/genética , Dados de Sequência Molecular , Filogenia , Interferência de RNA , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , RNA Líder para Processamento/biossíntese , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Alinhamento de Sequência , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/química , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Transcrição Gênica/genética
4.
Mol Microbiol ; 67(2): 435-47, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18067542

RESUMO

The Trypanosoma brucei genome is colonized by the site-specific non-LTR retrotransposon SLACS, or spliced leader-associated conserved sequence, which integrates exclusively into the spliced leader (SL) RNA genes. Although there is evidence that the RNA interference (RNAi) machinery regulates SLACS transcript levels, we do not know whether RNAi deficiency affects the genomic stability of SLACS, nor do we understand the mechanism of SLACS transcription. Here, we report that prolonged culturing of RNAi-deficient T. brucei cells, but not wild-type cells, results in genomic rearrangements of SLACS. Furthermore, two populations of SLACS transcripts persist in RNAi-deficient cells: a full-length transcript of approximately 7 kb and a heterogeneous population of small SLACS transcripts ranging in size from 450 to 550 nt. We provide evidence that SLACS transcription initiates at the +1 of the interrupted SL RNA gene and proceeds into the 5' UTR and open reading frame 1 (ORF1). This transcription is carried out by an RNA polymerase with alpha-amanitin sensitivity reminiscent of SL RNA synthesis and is dependent on the SL RNA promoter. Additionally, we show that both sense and antisense small SLACS transcripts originate from ORF1 and that they are associated with proteins in vivo. We speculate that the small SLACS transcripts serve as substrates for the production of siRNAs to regulate SLACS expression.


Assuntos
Genoma de Protozoário , Interferência de RNA , RNA de Protozoário/genética , RNA Líder para Processamento/genética , Retroelementos/genética , Transcrição Gênica , Trypanosoma brucei brucei/genética , Animais , Rearranjo Gênico , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA