Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(23): 17396-17409, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36354075

RESUMO

With the widespread photovoltaic deployment to achieve the net-zero energy goal, the resulting photovoltaic waste draws attention. In China, considerable steps have not been taken for photovoltaic waste management. The lack of relevant scientific information on photovoltaic waste brings difficulties to the establishment of photovoltaic waste regulatory systems. In this study, the necessity and feasibility of photovoltaic waste recovery were investigated. In China, the photovoltaic waste stream was quantified as 48.67-60.78 million t in 2050. In photovoltaic waste, indium, selenium, cadmium, and gallium were in high risk, judging by the metal criticality analysis, which meant that their recovery was significant to alleviate the resource shortage. The full recovery method was proved to reduce the environmental burdens most. For cost and benefit analysis, the net present value/size was -1.02 $/kg according to the current industrial status. However, it can be profitable with the recovery of silver. This study provides scientific and comprehensive information for photovoltaic waste management in China and is expected to promote the sustainable development of photovoltaic industry.


Assuntos
Reciclagem , Gerenciamento de Resíduos , Estudos de Viabilidade , Gerenciamento de Resíduos/métodos , China
2.
Environ Sci Technol ; 55(11): 7643-7653, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983726

RESUMO

Recovering valuable materials from spent lithium-ion batteries is an important task because of the asymmetry in resource distribution, supply, and demand around the world. A lithium-ion battery is a combination system of various elements and their oxides. Current recovering technologies focus on the separation of valuable metal elements. They can inescapably bring secondary contamination and cost to the environment due to the addition of leachants and precipitants. To recover valuable materials, in situ recombination of elements in spent lithium-ion batteries can be a more economical and environment-friendly solution. Herein, we developed a technology based on in situ aluminothermic reduction and interstitial solid solution transformation to recover high-value γ-LiAlO2 and LiAl5O8 under vacuum and high-temperature (1723 K) conditions. It was found that the process of Li2O filling into the lattice of O-Al-O structure is an energy-reducing process, while LiAl5O8 was an existing high-energy transition-state matter. Since there was no wastewater generated, the process brought a new environment-friendly method for recovering valuable metals from spent lithium-ion batteries. This study also provides new comprehension regarding the design for high-value products' recovery from multi-element mixed wastes on an atomic scale.


Assuntos
Lítio , Reciclagem , Fontes de Energia Elétrica , Metais , Recombinação Genética
3.
Ecotoxicol Environ Saf ; 174: 175-180, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826543

RESUMO

A one-step sample processing was developed to determine the levels of perchlorate in human urine, whole blood and breast milk by using liquid chromatography tandem mass spectrometry (LC-MS/MS). Athena C18-WP column was used to separate and analyze perchlorate. Perchlorate and isotope-labeled perchlorate (Cl18O4-) internal standards were spiked in the sample matrix through vortex mixing, centrifugation, and filtration. The filtrate was collected and subjected to LC analysis. The developed method was validated for its reproducibility, linearity, trueness, and recovery. Satisfactory recovery of perchlorate ranged from 81% to 117% with intraday relative standard deviations (RSDs) (n = 3) and inter-day RSDs (n = 9) of 5-18% and of 5-16%, respectively. Good linearity (R2 ≥ 0.99) was observed. Limits of detection and quantification for perchlorate ranged from 0.06 µg/L to 0.3 µg/L and from 0.2 µg/L to 1 µg/L, respectively. Perchlorate concentrations were found in human urine (n = 38) and whole blood (n = 8) samples with the range of 6.5-288.6 µg/L and 0.3-2.8 µg/L, respectively. These results indicate the applicability of our developed method in determining perchlorate level in real samples. Moreover, this method is also highly reliable, sensitive and selective in detecting perchlorate in human urine, whole blood and breast milk samples and may be applicable to other matrixes i.e. saliva, serum, plasma, milk powder and dairy milk.


Assuntos
Percloratos/análise , Animais , Cromatografia Líquida/métodos , Exposição Ambiental/análise , Feminino , Humanos , Leite , Leite Humano/química , Percloratos/sangue , Percloratos/urina , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Urinálise/métodos
4.
Ecotoxicol Environ Saf ; 169: 707-713, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30502520

RESUMO

Electronic waste or e-waste dismantling activities are known to release metals. However, the human exposure pathways of metals, and their association with oxidative stress in e-waste dismantling areas (EDAs) remain unclear. In this study, our results revealed elevated geometric mean concentrations in vegetables (Cd 0.096 and Pb 0.35 µg/g fw), rice (Cd 0.15, Pb 0.20, and 12.3 µg/g fw), hen eggs (Cd 0.006 and Pb 0.071 µg/g fw), and human urine (Cd 2.12, Pb 4.98, Cu 22.2, and Sb 0.20 ng/mL). Our calculations indicate that rice consumption source accounted for the overwhelming proportion of daily intakes (DIs) of Cd (61-64%), Cu (85-89%), and Zn (75-80%) in children and adults living in EDA; vegetables were the primary contributors to the DIs of Cd (30-32%); and rice (20-29%), vegetables (28-38%), and dust ingestion (26-45%) were all important exposure sources of Pb. Risk assessment predicted that DIs of Cd, Pb, Cu, and Zn via food consumption poses health risks to local residents of EDAs, and the urinary concentrations of analyzed metals were significantly (Pearson correlation coefficient: r = 0.324-0.710; p < 0.01) associated with elevated 8-OHdG, a biomarker of oxidative stress in humans.


Assuntos
Água Potável/química , Resíduo Eletrônico/análise , Contaminação de Alimentos/análise , Metais Pesados/urina , Poluentes do Solo/análise , Adulto , Animais , Galinhas , Criança , China , Poeira/análise , Grão Comestível/química , Ovos/análise , Feminino , Humanos , Oryza/química , Medição de Risco , Verduras/química
5.
Environ Sci Technol ; 51(4): 2427-2437, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28094923

RESUMO

In this study, three chlorinated (Cl-mOPs) and five nonchlorinated (NCl-mOPs) organophosphate metabolites were determined in urine samples collected from participants living in an electronic waste (e-waste) dismantling area (n = 175) and two reference areas (rural, n = 29 and urban, n = 17) in southern China. Bis(2-chloroethyl) phosphate [BCEP, geometric mean (GM): 0.72 ng/mL] was the most abundant Cl-mOP, and diphenyl phosphate (DPHP, 0.55 ng/mL) was the most abundant NCl-mOP. The GM concentrations of mOPs in the e-waste dismantling sites were higher than those in the rural control site. These differences were significant for BCEP (p < 0.05) and DPHP (p < 0.01). Results suggested that e-waste dismantling activities contributed to human exposure to OPs. In the e-waste sites, the urinary concentrations of bis(2-chloro-isopropyl) phosphate (r = 0.484, p < 0.01), BCEP (r = 0.504, p < 0.01), dibutyl phosphate (r = 0.214, p < 0.05), and DPHP (r = 0.440, p < 0.01) were significantly increased as the concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of DNA oxidative stress, increased. Our results also suggested that human exposure to OPs might be correlated with DNA oxidative stress for residents in e-waste dismantling areas. To our knowledge, this study is the first to report the urinary levels of mOPs in China and examine the association between OP exposure and 8-OHdG in humans.


Assuntos
Retardadores de Chama/metabolismo , Plastificantes , China , Resíduo Eletrônico , Humanos , Organofosfatos/metabolismo , Estresse Oxidativo , Reciclagem
6.
J Environ Manage ; 187: 550-559, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865729

RESUMO

This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management.


Assuntos
Reatores Biológicos , Resíduos Industriais , Oxigênio/química , Águas Residuárias , Lógica Fuzzy , Humanos , Redes Neurais de Computação , Sistemas On-Line , Software , Soluções
7.
Artigo em Inglês | MEDLINE | ID: mdl-27610477

RESUMO

This paper presents the development and evaluation of three fuzzy neural network (FNN) models for a full-scale anaerobic digestion system treating paper-mill wastewater. The aim was the investigation of feasibility of the approach-based control system for the prediction of effluent quality and biogas production from an internal circulation (IC) anaerobic reactor system. To improve FNN performance, fuzzy subtractive clustering was used to identify model's architecture and optimize fuzzy rule, and a total of 5 rules were extracted in the IF-THEN format. Findings of this study clearly indicated that, compared to NN models, FNN models had smaller RMSE and MAPE as well as bigger R for the testing datasets than NN models. The proposed FNN model produced smaller deviations and exhibited a superior predictive performance on forecasting of both effluent quality and biogas (methane) production rates with satisfactory determination coefficients greater than 0.90. From the results, it was concluded that FNN modeling could be applied in IC anaerobic reactor for predicting the biodegradation and biogas production using paper-mill wastewater.


Assuntos
Biocombustíveis , Reatores Biológicos , Lógica Fuzzy , Metano/biossíntese , Modelos Teóricos , Redes Neurais de Computação , Anaerobiose , Biodegradação Ambiental , Análise por Conglomerados , Resíduos Industriais , Papel , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
8.
J Environ Manage ; 184(Pt 2): 281-288, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729177

RESUMO

Dimethyl phthalate (DMP) as one of the most important and extensively used Phthalic acid esters (PAEs) is known to likely cause dysfunctions of the endocrine systems, liver, and nervous systems of animals. In this paper, the degradation and behavior of DMP were investigated in a laboratory scale anaerobic/anoxic/oxic (AAO) treatment system. In addition, a degradation model including biodegradation and sorption was formulated so as to evaluate the fate of DMP in the treatment system, and a mass balance model was designed to determine kinetic parameters of the removal model. The study indicated that the optimal operation condition of HRT and SRT for DMP and nutrients removal were 18 h and 15 d respectively, and the degradation rates of anaerobic, anoxic and aerobic zones for DMP were 13.4%, 13.0% and 67.7%, respectively. Under the optimal conditions, the degraded DMP was 73.8%, the released DMP in the effluent was 5.8%, the accumulated DMP was 19.3%, and the remained DMP in the waste sludge was 1.1%. Moreover, the degradation process of DMP by acclimated activated sludge was in accordance with the first-order kinetics equation. The model can be used for accurately modeling the degradation and behavior of DMP in the AAO system.


Assuntos
Ácidos Ftálicos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Cinética , Modelos Teóricos , Ácidos Ftálicos/química , Esgotos , Eliminação de Resíduos Líquidos/instrumentação , Poluentes Químicos da Água/química
9.
Environ Pollut ; 359: 124593, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043313

RESUMO

In order to understand the organophosphate flame retardants (OPFRs) pollution and evaluate the inhalation exposure risk in formal e-waste recycling facilities, the air concentrations, particle size distribution and gas-particle partitioning of OPFRs in four typical workshops were investigated. The total Σ15OPFR concentrations inside workshops were in the range of 64.7-682 ng/m3, with 5.80-23.4 ng/m3 in gas phase and 58.8-658 ng/m3 in particle phase. Triphenyl phosphate (TPHP) and tris(2-chloroisopropyl) phosphate (TCIPP) were main analogs, both of which contributed to 49.0-85.7% of total OPFRs. In the waste printed circuit boards thermal treatment workshop, the OPFRs concentration was the highest, and particle-bound OPFRs mainly distributed in 0.7-1.1 µm particles. The proportions of TPHP in different size particles increased as the decrease of particle size, while TCIPP presented an opposite trend. The gas-particle partitioning of OPFR analogs was dominated by absorption process, and did not reach equilibrium state due to continuous emission of OPFRs from the recycling activities. The deposition fluxes of OPFRs in respiratory tract were 65.7-639 ng/h, and the estimated daily intake doses of OPFRs were 8.52-76.9 ng/(kg·day) in four workshops. Inhalation exposure was an important exposure pathway for e-waste recycling workers, and deposition fluxes of size-segregated OPFRs were mainly in head airways region.

10.
Environ Sci Technol ; 46(11): 6214-21, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22571825

RESUMO

Separation efficiency of eddy current separation (ECS) is low (about 85%) in industrial application for recovering aluminum from crushed waste toner cartridges. Influencing factors of ECS were studied to improve the separation efficiency. Operation factors were researched by orthogonal experiment of ECS on investigating the separation distance between aluminum and plastic flakes. The results indicated the difference (ωR-v) between feeding speed (v) and rotation speed (ω) of magnetic drum (radius: R) was critical factor of influencing the separation efficiency, feeding speed (v) was general factor, and collecting position (H) was subordinate factor. Separation efficiency decreased as the increasing of v, and increased as the increasing of (ωR-v). 0.9 m was the optimal value of H in the orthogonal experiment. Influencing factors of particle characteristics and machine structure were studied by newly established models for computing the separation distance between aluminum and plastic flake in ECS. The results indicated changing of particle size would influence the separation efficiency greater than ω and particle shape. Separation efficiency will increase as the increasing of particle size and ω. Shape of circle is beneficial to improve separation efficiency. Finally, approaches to improve separation efficiency of ECS were presented.


Assuntos
Alumínio/isolamento & purificação , Eletricidade , Resíduo Eletrônico/análise , Campos Magnéticos , Impressão/instrumentação , Reciclagem/métodos , Eliminação de Resíduos/métodos , Modelos Teóricos , Material Particulado/química , Plásticos
11.
Environ Sci Technol ; 46(24): 13386-92, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23181933

RESUMO

Environmental information in physical recovery system of waste refrigerator cabinets was provided in this paper. The system included closed shearing, activated carbon adsorption (ACA), air current separation, magnetic separation, and eddy current separation. Exposures of CFC-11, heavy metals, and noise emitted from the system were assessed. Abundant CFC-11 (>510 mg/m³) was detected in crusher cavity. However, due to the employment of ACA, little CFC-11 (<9.5 mg/m³) could be detected out the recovery system. Heavy metals were detected in the air of workshop (TSP: Cu ≤ 4.91 µg/m³, Pb ≤ 3.17 µg/m³, PM10: Cu ≤ 2.1 µg/m³, Pb ≤ 1.3 µg/m³). Assessment results indicated the concentrations of heavy metals in air were safe for workers. Copper (25.8 mg/kg) and lead (19.5 mg/kg) were found in ground dust of the workshop and the concentrations were safe for soils. Noise level (98.2 dB(A)) of crushing process could cause disease and hearing impairment to workers. For controlling noise, acoustic hood was designed to reduce the noise level to 69.7 dB(A).The above information was of assistance to the industrialization of physical process for recovering waste refrigerator cabinets on environmental protection. Meanwhile, it contributed to the knowledge of environmental information of physical technology for recovering e-waste.


Assuntos
Poluição Ambiental/prevenção & controle , Reciclagem , Refrigeração/instrumentação , Medição de Risco , Resíduos/análise , Acústica , Poluentes Atmosféricos/análise , Clorofluorcarbonetos de Metano/análise , Poeira/análise , Monitoramento Ambiental , Metais Pesados/análise , Ruído/prevenção & controle , Exposição Ocupacional/análise
12.
Environ Sci Technol ; 46(1): 494-9, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22126443

RESUMO

The crush-pneumatic separation-corona electrostatic separation production line provides a feasible method for industrialization of waste printed circuit boards (PCBs) recycling. To determine the potential environmental contamination in the automatic line workshop, noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line have been evaluated in this paper. The mean noise level in the workshop has been reduced from 96.4 to 79.3 dB since the engineering noise control measures were employed. Noise whose frequency ranged from 500 to 1000 Hz is controlled effectively. The mass concentrations of TSP and PM(10) in the workshop are 282.6 and 202.0 µg/m(3), respectively. Pb (1.40 µg/m(3)) and Cu (1.22 µg/m(3)) are the most enriched metals in TSP samples followed by Cr (0.17 µg/m(3)) and Cd (0.028 µg/m(3)). The concentrations of Cu, Pb, Cr, and Cd in PM(10) are 0.88, 0.56, 0.12, and 0.88 µg/m(3), respectively. Among the four metals, Cr and Pb are released into the ambience of the automatic line more easily in the crush and separation process. Health risk assessment shows that noncancerous effects might be possible for Pb (HI = 1.45), and noncancerous effects are unlikely for Cr, Cu, and Cd. The carcinogenic risks for Cr and Cd are 3.29 × 10(-8) and 1.61 × 10(-9), respectively. It indicates that carcinogenic risks on workers are relatively light in the workshop. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCBs recycling industry.


Assuntos
Resíduo Eletrônico/análise , Eletrônica , Poluição Ambiental/análise , Indústrias , Metais Pesados/análise , Ruído/efeitos adversos , Reciclagem , Adulto , Poeira/análise , Engenharia , Humanos , Exposição por Inalação/análise , Masculino , Material Particulado/química , Medição de Risco , Gerenciamento de Resíduos
13.
Waste Manag ; 139: 105-115, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959086

RESUMO

In this study, the distribution of precious metals in waste printed circuit boards was investigated and the economic value of recycling was assessed. Contacts of pins, slots, interfaces and the board surface in waste printed circuit boards were analyzed, and three types of precious metals were detected. The content of gold, silver and palladium ranged from 179.86 mg/kg to 3694.51 mg/kg, 809 mg/kg to 12320.51 mg/kg and 96.25 mg/kg to 117.49 mg/kg, respectively. Gold was distributed wildly in contacts of many slots and all interfaces, while contacts of only two interfaces (the cable and USB) contained palladium. The highest content of Au was found in contacts of the cable. Silver mainly concentrated on pins (metal foil contacts) of electronic components and its highest content was found in microchips. The economic value of recyclable precious metals in 1 t waste printed circuit boards was up to 2292.94 dollars, of which Au contributed 98%. This study indicates the prominent economic benefits of precious metal recovery from waste printed circuit boards. Moreover, the scientific information provide guidance for the directional and accurate recovery of precious metals from waste printed circuit boards.


Assuntos
Resíduo Eletrônico , Resíduo Eletrônico/análise , Ouro , Paládio , Reciclagem , Prata
14.
J Hazard Mater ; 421: 126814, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396969

RESUMO

The recovery and reuse of waste brominated resin, which is a typical plastic waste, is troublesome because it contains toxic brominated flame retardants. Conventional pyrolysis of brominated resin was suggested to be an effective approach for debromination. However, conventional pyrolysis caused high energy consumption and high yield of toxic volatiles. An energy-saving and environment-friendly technology called infrared heating was reported in this study. According to computation of the developed heat transfer models, the critical debromination temperature was 260 °C in infrared heating, which was 271 °C lower than conventional pyrolysis. Meanwhile, no volatile product appeared in the reported technology. In the pyrolysis residue after infrared heating, bromine concentrated orientationally in the fixed and limited area on the resin particles. Free radicals, such as •CH3, H•, and Br•, were combined with Br• generated in infrared heating to form the concentrated bromine. Compared to the chaotic distribution of bromine in conventional pyrolysis, the orientational concentration of bromine was a progress for removing and collecting bromine in infrared heating. Moreover, compared to conventional pyrolysis, infrared heating could decrease 76.2% energy consumption. This work contributed to provide the novel technology for recovery of plastic wastes.


Assuntos
Bromo , Plásticos , Temperatura Alta , Pirólise , Tecnologia
15.
Environ Pollut ; 306: 119436, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35537557

RESUMO

Microplastics are widely distributed in the environment, their potential ecological risks on soil organism have attracted extensive attention, while the investigation of the size effect on its accumulation and toxicity in soil invertebrates are still lacking. In this study, we set out to explore the size-dependent effects of microplastics on soil invertebrates with different doses. Specifically, we investigated the effect of polystyrene (PS) microplastics on earthworm Eisenia fetida with three different sizes (70 nm, 1 µm and 10 µm) and exposure doses (0.5%, 5% and 10% w/w in food). Results showed that PS microplastics had no effects on the mortality of E. fetida, while an obvious growth inhibition with rising exposure concentrations was observed, especially under exposure of 70 nm plastic particles. Additionally, 70 nm PS microplastics induced more serious oxidative stress, energy depletion and histopathological damage on earthworms compared with larger sizes. The accumulation and distribution pattern of microplastics was size-dependent in earthworms after 3- and 7-day exposure as revealed by laser confocal microscopy. Notably, earthworms accumulated more micro-sized particles (MPs, 10 µm and 1 µm) but with less toxic responses, suggesting its weaker toxicity. The distribution pattern of MPs may explain the weak relation between accumulation and toxicity as they mainly distributed in epidermis of mid- and tail-section and the intestine of earthworm. In contrast, nano-sized particles (NPs, 70 nm) were more distributed in the head-section and subcutaneous tissue of the skin, which was in accordance with the obvious toxic responses found in earthworms exposing to NPs. Our study highlighted the importance of size in determining the accumulation, distribution and toxic effects of plastic particles towards soil invertebrates and advocates the necessity of ecological risk assessments of NPs.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos/toxicidade , Solo , Poluentes do Solo/análise , Distribuição Tecidual
16.
J Hazard Mater ; 416: 125881, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492821

RESUMO

The recovery of waste glass is an important issue in the fields of social sustainable development and resource recovery. The removal of organic impurity is the first step in the recovery of waste glass. Currently, desiccation-dissociation technology is advised to remove the organic impurity from waste glass. However, the risks of the organic impurity desiccation-dissociation process of waste glass have not been reported in the literature. In this paper, the environmental risks of the organic impurity desiccation-dissociation process of waste glass were assessed. The assessment results indicated that none of TSP (0.143 mg/m3), PM10 (0.090 mg/m3), heavy metals in air and residue after desiccation-dissociation were contaminated. However, the gas contained abundant organic contaminants, especially benzene, whose content was up to 5.26%. Molecular dynamics simulation and contaminant formation pathways analysis indicated that the formation of gaseous organic contaminants was because overmuch small molecular free radicals were generated at 200 °C and combined with each other. Hence, reducing the temperature of desiccation-dissociation, wearing gas masks, and placing organic gas contaminant absorption liquids are necessary protective measures. This paper provides scientific data for the green development of organic impurity desiccation-dissociation technology of waste glass. Meanwhile, this paper makes up for the shortage of the environmental information of the organic impurity desiccation-dissociation of waste glass.


Assuntos
Dessecação , Metais Pesados
17.
J Hazard Mater ; 403: 123586, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795820

RESUMO

Presently, biocyanidation technology is being usually adopted to recover precious metals from an increasing quantity of waste printed circuit boards. The main aim of this work was to investigate the biofilm formation of Pseudomonas and its ability to leach precious metals. Based on batch experiments, strain 113 showed the highest biofilm-forming activity in optimal culture conditions of pH 7.0, 25 °C, and 1/25 NB medium among the Pseudomonas strains isolated. Both low concentrations of Cu2+ (500 ppm) and Ag+ (2.5 ppm) promoted biofilm formation. Under the optimal culture conditions for biofilm formation, the concentration of CN- was up to 5.0 ppm. In the continuous silver leaching experiment, the Ag+ concentration reached 4.0 ppm and the leaching efficiency was 14.7 % at 7 d. The results of this study may contribute to the construction of a bioreactor used for continuous leaching of waste printed circuit boards in an attempt to recover precious metals. Our results may also aid in the industrialization of biocyanidation technology.


Assuntos
Resíduo Eletrônico , Biofilmes , Cobre , Resíduo Eletrônico/análise , Pseudomonas , Reciclagem , Prata , Tecnologia
18.
J Hazard Mater ; 416: 125761, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819642

RESUMO

Essential elements can affect the bioavailability, uptake, and toxicity of metals. However, hardly any research has focused on the roles of essential elements on the toxicity of rare earth metals. Here we examined how P and Fe modified the individual and binary toxicity of Y and Ce to Triticum aestivum, respectively. Standard root elongation tests were used to quantify the toxicity of both single and binary mixtures at three levels of P addition (1, 5, and 10 µM) and Fe addition (0.1, 1, and 5 mM). Our results showed that both P and Fe can alleviate individual toxicity of Y or Ce irrespective of the dose indicators as suggested by the enhanced EC50 values. Both P and Fe might mitigate Y/Ce toxicity by limiting Y/Ce uptake into roots and improving nutritional status of wheats, whereas P can also decrease free Y/Ce ion activities in the exposure media. As for the mixture toxicity of Y and Ce, only improved P, but not Fe can exhibit approximately additive mixture toxicity, which can be adequately predicted by the simple Concentration Addition model. Our results suggested the important roles of P and Fe in assessing Y and Ce toxicity accurately.


Assuntos
Cério , Metais Terras Raras , Cério/toxicidade , Metais , Triticum , Ítrio/toxicidade
19.
J Hazard Mater ; 410: 124611, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33246811

RESUMO

Ball-milling technology is adopted for the debromination of nonmetallic particles of waste printed circuit boards. During the ball-milling process, too short ball-milling time causes insufficient debromination. Excessive ball-milling leads to the waste of resources and the destruction of the main structure of nonmetallic particles resin, unfavorable for the secondary utilization. However, how to determine debromination time of nonmetallic particles in ball-milling process has not been detailed studied. In this study, the ball-milling energy was coupled with the degradation energy of pentabromodiphenyl ether molecule to compute the time for each chemical bond to break. The ball-milling model was used to accurately compute effective mechanical ball-milling energy (1.234 × 10-3 J) generated by a single collision. The average bond energies of C‒O bond, C‒Br bond and C‒H bond (261.24, 302.05 and 489.50 kJ/mol) were analyzed by density functional theory. Under the conditions of 220 r/min and 1.2 g nonmetallic particles and NZVI (4:1). The C‒O bond, C‒Br bond, and C‒H bond fractured completely in turn at 2.25 h, 7.23 h (optimal debromination time), and 11.72 h. Based on the analysis of debromination pathways, it inferred that H2O, HBr, CH3Br, CH4, FeBr2, and graphite were generated. This paper develops a novel idea of the schedule of debromination time of nonmetallic particles, contributing to the directional removal of organic pollutants by ball-milling.

20.
J Hazard Mater ; 403: 123889, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264955

RESUMO

In the last years, the synthesis and applications of biochar/Fe composites have been extensively studied, but only few papers have systematically evaluated their removal performances. Herein, we successfully synthesized and structurally characterized Fe0, Fe3C, and Fe3O4-coated biochars (BCs) for the removal of chlortetracycline hydrochloride (CH). Evaluation of their removal rate and affinity revealed that Fe0@BC could achieve better and faster CH removal and degradation than Fe3C@BC and Fe3O4@BC. The removal rate was controlled by the O-Fe content and solution pH after the reaction. The CH adsorption occurred on the O C groups of Fe0@BC and the OC and OFe groups of Fe3C@BC and Fe3O4@BC. Electron paramagnetic resonance analysis and radical quenching experiments indicated that HO and 1O2/ O2- were mainly responsible for CH degradation by biochar/Fe composites. Additional parameters, such as effects of initial concentrations and coexisting anions, regeneration capacity, cost and actual wastewater treatment were also explored. Principal component analysis was applied for a comprehensive and quantitative assessment of the three materials, indicating Fe0@BC is the most beneficial functional material for CH removal.


Assuntos
Clortetraciclina , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA