Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Sci Technol ; 58(1): 780-794, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38118133

RESUMO

Assessing the impacts of cumulative anthropogenic disturbances on estuarine ecosystem health is challenging. Using spatially distributed sediments from the Pearl River Estuary (PRE) in southern China, which are significantly influenced by anthropogenic activities, we demonstrated that metagenomics-based surveillance of benthic microbial communities is a robust approach to assess anthropogenic impacts on estuarine benthic ecosystems. Correlational and threshold analyses between microbial compositions and environmental conditions indicated that anthropogenic disturbances in the PRE sediments drove the taxonomic and functional variations in the benthic microbial communities. An ecological community threshold of anthropogenic disturbances was identified, which delineated the PRE sediments into two groups (H and L) with distinct taxa and functional traits. Group H, located nearshore and subjected to a higher level of anthropogenic disturbances, was enriched with pollutant degraders, putative human pathogens, fecal pollution indicators, and functional traits related to stress tolerance. In contrast, Group L, located offshore and subjected to a lower level of anthropogenic disturbances, was enriched with halotolerant and oligotrophic taxa and functional traits related to growth and resource acquisition. The machine learning random forest model identified a number of taxonomic and functional indicators that could differentiate PRE sediments between Groups H and L. The identified ecological community threshold and microbial indicators highlight the utility of metagenomics-based microbial surveillance in assessing the adverse impacts of anthropogenic disturbances in estuarine sediments, which can assist environmental management to better protect ecosystem health.


Assuntos
Ecossistema , Microbiota , Humanos , Efeitos Antropogênicos , Sedimentos Geológicos/análise , Biota , Rios , Estuários , Monitoramento Ambiental
2.
Environ Sci Technol ; 58(29): 12933-12942, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39003765

RESUMO

Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 µg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Poluentes Químicos da Água/toxicidade
3.
Environ Sci Technol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016874

RESUMO

Emerging aryl organophosphate esters (aryl-OPEs) have been employed as substitutes for organohalogen flame retardants in recent years; however, their environmental occurrence and associated impacts in urban estuarine sediments have not been adequately investigated, impeding regulatory decision-making. Herein, field-based investigations and modeling based on surface sediment and sediment core analysis were employed to uncover the historical pollution and current environmental impacts of aryl-OPEs in the Pearl River Estuary, South China. Our results revealed a substantial increase in aryl-OPE emission, particularly emerging aryl-OPEs, through sediment transport to the estuary since the 2000s. The emerging aryl-OPEs comprised 83% of the total annual input in the past decade, with an average annual input of 155,000 g. Additionally, the emerging-to-traditional aryl-OPE concentration ratios increased with decreasing distance from the shore, peaking in the highly urbanized riverine outlets. These findings indicate that inventories of emerging aryl-OPEs are likely increasing in estuarine sediments and their emissions are surpassing those of traditional aryl-OPEs. Our risk-based priority screening approach indicates that some emerging aryl-OPEs, particularly bisphenol A bis(diphenyl phosphate), can pose a higher environmental risk than traditional aryl-OPEs in estuarine sediments. Overall, our study highlights the importance of recognizing the environmental impacts of emerging aryl-OPEs.

4.
Environ Sci Technol ; 57(11): 4471-4480, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877486

RESUMO

The increasing use of chiral pharmaceuticals has led to their widespread presence in the environment. However, their toxicokinetics have rarely been reported. Therefore, the tissue-specific uptake and depuration kinetics of two pairs of pharmaceutical enantiomers, S-(-)-metoprolol versus R-(+)-metoprolol and S-(+)-venlafaxine versus R-(-)-venlafaxine, were studied in marine medaka (Oryzias melastigma) during a 28-day exposure and 14-day clearance period. The toxicokinetics of the studied pharmaceuticals, including uptake and depuration rate constants, depuration half-life (t1/2), and bioconcentration factor (BCF), were reported for the first time. The whole-fish results demonstrated a higher S- than R-venlafaxine bioaccumulation potential, whereas no significant difference was observed between S- and R-metoprolol. O-desmethyl-metoprolol (ODM) and α-hydroxy-metoprolol (AHM) were the main metoprolol metabolites identified by suspect screening, and the ratios of ODM to AHM were 3.08 and 1.35 for S- and R-metoprolol, respectively. N,O-Didesmethyl-venlafaxine (NODDV) and N-desmethyl-venlafaxine (NDV) were the main venlafaxine metabolites, and the ratios of NODDV to NDV were 1.55 and 0.73 for S- and R-venlafaxine, respectively. The highest tissue-specific BCFs of the four enantiomers were all found in the eyes, meriting in-depth investigation.


Assuntos
Oryzias , Animais , Cloridrato de Venlafaxina , Metoprolol/metabolismo , Distribuição Tecidual , Preparações Farmacêuticas
5.
Environ Sci Technol ; 57(35): 13148-13160, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37565447

RESUMO

Amphibians are sensitive biomonitors of environmental pollutants but reports regarding per- and polyfluoroalkyl substances (PFAS), a class of synthetic organofluorine substances, are limited. In this study, samples of water and Chinese toads (Bufo gargarizans) were collected in Chaohu Lake, China. Tissue-specific bioaccumulation characteristics of 39 PFAS, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFAS, and 12 PFAA precursors, were investigated, and the levels of some biochemical indicators were determined. The highest PFAS concentrations were found in the liver [215.97 ng/g dry weight (dw)] of Chinese toads, followed by gonads (135.42 ng/g dw) and intestine (114.08 ng/g dw). A similar tissue distribution profile was found between legacy and emerging PFAS in the toads, and the occurrence of two emerging PFAS, 2,3,3,3-tetrafluoro-2-propanoate (HFPO-DA) and 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) in the amphibians were for the first time reported. Field-based bioaccumulation factors of HFPO-DA were higher than perfluorooctanoic acid, indicating the higher bioaccumulation potential of this emerging PFAS than the legacy C8 compound. Males had significantly higher gonad PFAS levels than females while estradiol levels in gonads increased with increasing concentrations of certain PFAS (e.g., 6:2 H-PFESA), implying that PFAS may trigger estrogenic effects in the toads, especially for male toads.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Feminino , Masculino , Animais , Bioacumulação , Lagos , Distribuição Tecidual , Baías , Fluorocarbonos/análise , China , Poluentes Químicos da Água/análise , Bufonidae , Monitoramento Ambiental
6.
Environ Sci Technol ; 57(25): 9298-9308, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37295780

RESUMO

Halogenated flame retardants (HFRs) are a large class of chemical additives intended to meet flammability safety requirements, and at present, they are ubiquitous in the environment. Herein, we conducted the target analysis and suspect screening of legacy and novel HFRs and their metabolites in the blubber of finless porpoises (Neophocaena phocaenoides; n = 70) and Indo-Pacific humpback dolphins (Sousa chinensis; n = 35) stranded in Hong Kong, a coastal city in the South China Sea, between 2013 and 2020. The average concentrations of total target HFRs (ΣHFRs) were 6.48 × 103 ± 1.01 × 104 and 1.40 × 104 ± 1.51 × 104 ng/g lipid weight in porpoises and dolphins, respectively. Significant decreasing temporal trends were observed in the concentrations of tetra-/penta-/hexa-bromodiphenyl ethers (tetra-/penta-/hexa-BDEs) in adult porpoises stranded from 2013-2015 to 2016-2020 (p < 0.05), probably because of their phasing out in China. No significant difference was found for the concentrations of decabromodiphenyl ether and hexabromocyclododecane, possibly due to their exemption from the ban in China until 2025 and 2021, respectively. Eight brominated compounds were additionally identified via suspect screening. A positive correlation was found between the concentrations of tetra-BDE and methyl-methoxy-tetra-BDE (Me-MeO-tetra-BDE) (p < 0.05), indicating that the metabolism of tetra-BDE may be a potential source of Me-MeO-tetra-BDE in marine mammals.


Assuntos
Golfinhos , Retardadores de Chama , Toninhas , Animais , Hong Kong , Retardadores de Chama/análise , Toninhas/metabolismo , Golfinhos/metabolismo , China , Éteres Difenil Halogenados/análise , Monitoramento Ambiental/métodos
7.
Environ Sci Technol ; 57(31): 11656-11665, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503546

RESUMO

Due to their prevalence in urban contaminated water, the driving factors of organophosphate esters (OPEs) need to be well examined, and their related ecological impacts should include that of their transformation products (TPs). Additionally, a robust framework needs to be developed to integrate multiple variables related to ecological impacts for improving the ecological health assessment. Therefore, OPEs and TPs in urban stormwater and wastewater in Hong Kong were analyzed to fill these gaps. The results revealed that the total concentrations of OPEs in stormwater were positively correlated with the area of transportation land. Individual TP concentrations and the mass ratios of individual TPs/OPEs were somewhat higher in sewage effluents than that in stormwater. OPEs generally showed relatively higher risk quotients than TPs; however, the total risk quotients increased by approximately 38% when TPs were factored in. Moreover, the molecular docking results suggested that the investigated TPs might cause similar endocrine disruption in marine organisms as their parent OPEs. This study employed the Toxicological-Priority-Index scheme to successfully integrate the ecological risks and endocrine-disrupting effects to refine the ecological health assessment of the exposure to OPEs and their TPs, which can better inform the authority on the prioritization for regulating these contaminants of emerging concern in urban built environments.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Esgotos , Poluentes Químicos da Água/análise , Simulação de Acoplamento Molecular , Monitoramento Ambiental/métodos , Organofosfatos , Ésteres , China , Retardadores de Chama/análise
8.
Environ Sci Technol ; 57(22): 8355-8364, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220884

RESUMO

The ban/elimination of legacy per- and polyfluoroalkyl substances (PFASs) has led to a dramatic increase in the production and use of various emerging PFASs over the past decade. However, trophodynamics of many emerging PFASs in aquatic food webs remain poorly understood. In this study, samples of seawaters and marine organisms including 15 fish species, 21 crustacean species, and two cetacean species were collected from the northern South China Sea (SCS) to investigate the trophic biomagnification potential of legacy and emerging PFASs. Bis(trifluoromethylsulfonyl)imide was found in seawater via suspect screening (concentration up to 1.50 ng/L) but not in the biota, indicating its negligible bioaccumulation potential. A chlorinated perfluorooctane sulfonate (PFOS) analytical interfering compound was identified with a predicted formula of C14H23O5SCl6- (most abundant at m/z = 514.9373). Significant trophic magnification was observed for 22 PFASs, and the trophic magnification factors of cis- and trans-perfluoroethylcyclohexane sulfonate isomers (1.92 and 2.25, respectively) were reported for the first time. Perfluorohexanoic acid was trophic-magnified, possibly attributed to the PFAS precursor degradation. The hazard index of PFOS was close to 1, implying a potential human health risk via dietary exposure to PFASs in seafood on the premise of continuous PFAS discharge to the SCS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Humanos , Cadeia Alimentar , Ácidos Alcanossulfônicos/análise , Água do Mar , China , Fluorocarbonos/análise
9.
Environ Sci Technol ; 56(17): 12003-12013, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35948419

RESUMO

Transformation of organophosphate esters (OPEs) in natural ambient air and potential health risks from coexposure to OPEs and their transformation products are largely unclear. Therefore, a novel framework combining field-based investigation, in silico prediction, and target and suspect screening was employed to understand atmospheric persistence and health impacts of OPEs. Alkyl-OPE transformation products ubiquitously occurred in urban ambient air. The transformation ratios of tris(2-butoxyethyl) phosphate were size-dependent, implying that transformation processes may be affected by particle size. Transformation products of chlorinated- and aryl-OPEs were not detected in atmospheric particles, and atmospheric dry deposition might significantly contribute to their removal. Although inhalation risk of coexposure to OPEs and transformation products in urban ambient air was low, health risks related to OPEs may be underestimated as constrained by the identification of plausible transformation products and their toxicity testing in vitro or in vivo at current stage. The present study highlights the significant impact of particle size on the atmospheric persistence of OPEs and suggests that health risk assessments should be conducted with concurrent consideration of both parental compounds and transformation products of OPEs, in view of the nonnegligible abundances of transformation products in the air and their potential toxicity in silico.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , China , Monitoramento Ambiental/métodos , Ésteres , Retardadores de Chama/análise , Organofosfatos , Medição de Risco
10.
Environ Sci Technol ; 56(10): 6182-6191, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35438980

RESUMO

Restrictions on legacy per- and polyfluoroalkyl substances (PFASs) have led to the widespread use of emerging PFASs. However, their toxicokinetics have rarely been reported. Here, tissue-specific uptake and depuration kinetics of perfluoroethylcyclohexanesulfonate (PFECHS) and 6:2 and 8:2 chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs) were studied in marine medaka (Oryzias melastigma). The fish were exposed to these substances for 28 days (0.2 µg/L), followed by a clearance period of 14 days. The depuration constant (kd) of PFECHS [0.103 ± 0.009 day-1 (mean ± standard deviation)] was reported for the first time. Among the six studied tissues, the highest concentrations of 6:2 Cl-PFESA, 8:2 Cl-PFESA, and PFECHS were found in the liver [1540, 1230, and 188 ng (g of wet weight)-1, respectively] on day 28 while the longest residence times were found in the eyes (t1/2 values of 21.7 ± 4.3, 23.9 ± 1.5, and 17.3 ± 0.8 days, respectively). No significant positive correlation was found between the bioconcentration factors of the studied PFASs and the phospholipid or protein contents in different tissues of the studied fish. Potential metabolites of Cl-PFESAs, i.e., their hydrogen-substituted analogues (H-PFESAs), were identified by time-of-flight mass spectrometry. However, the biotransformation rates were low (<0.19%), indicating the poor capacity of marine medaka to metabolize Cl-PFESAs to H-PFESAs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Oryzias , Alcanossulfonatos/análise , Ácidos Alcanossulfônicos/análise , Animais , China , Éter , Éteres , Fluorocarbonos/análise , Cinética
11.
Environ Sci Technol ; 56(16): 11374-11386, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35922035

RESUMO

Pharmaceutical residues in the environment are of great concern as ubiquitous emerging contaminants. This study investigated the presence of 40 pharmaceuticals in water and sediment of the Pearl River Estuary (PRE) in the wet season of 2020. Among psychiatric drugs, only diazepam was found in water samples while six of them were detected in the sediment. The Σantibiotics levels ranged from 6.18 to 35.9 ng/L and 2.63 to 140 ng/g dry weight in water and sediment samples, respectively. Fluoroquinolones and tetracyclines were found well settling in the outlet sediment, while sulfonamides could be released from disturbed sediment under stronger tidal wash-out conditions. After entering the marine waters, pharmaceuticals tended to deposit at the PRE mouth by the influence of the plume bulge and onshore invasion of deep shelf waters. Low ecological risks to the aquatic organisms and of causing antimicrobial resistance were identified. Likewise, hydrological modeling results revealed insignificant risks: erythromycin-H2O and sulfamethoxazole discharged through the outlets constituted 30.8% and 6.74% of their environmental capacity, respectively. Source apportionment revealed that pharmaceutical discharges through the Humen and Yamen outlets were predominantly of animal origin. Overall, our findings provide strategic insights on environmental regulations to further minimize the environmental stress of pharmaceuticals in the PRE.


Assuntos
Estuários , Poluentes Químicos da Água , Animais , China , Monitoramento Ambiental , Sedimentos Geológicos/química , Hidrodinâmica , Preparações Farmacêuticas , Medição de Risco , Rios/química , Água , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 55(6): 3967-3975, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33635053

RESUMO

Achieving structural requirements for the exclusive selectivity of adsorbent to a specific metal remains challenging, as certain metal ions show similar adsorptive behaviors and preference toward a given site. We reported the morphology and oxidation state-dependent selectivity manipulating of layered oxides by controlling the dynamic evolution of different adsorptive sites. The computational investigation predicted the site-specific partitioning trends of metal ions at two sites of manganese oxide (MnO2) layers: the lateral edge sites (LESs) and octahedral vacancy sites (OVSs). In contrast to the predominant occupation of the OVSs for other metal ions, the binding of lead (Pb) ions was energetically favored at both the sites. We assembled ultrathin MnO2 nanosheets on the magnetic iron oxides to first enhance the accessibility of the LESs. A sequential ligand-promoted partial reduction of the atomic MnO2 layers induced the edge-to-interlayer migration of Mn atoms to block the nonspecific OVSs and activate the LESs, enabling a superior selectivity to Pb. In addition, the iron oxides helped construct a multifunctional adsorptive/electrosensing platform for Pb regarding their facile magnetic separation and electrochemical activity. Simultaneous selective adsorption and on-site monitoring of Pb(II) were achieved on this nanoplatform, owing to its satisfactory stability and sensitivity without an obvious matrix effect.


Assuntos
Compostos de Manganês , Óxidos , Adsorção , Íons , Oxirredução
13.
Environ Sci Technol ; 55(2): 1045-1056, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33395277

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been manufactured and widely used for over 60 years. Currently, there are thousands of marketed PFASs, but only dozens of them are routinely monitored. This work involved target, nontarget, and suspect screening of PFASs in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) and finless porpoise (Neophocaena phocaenoides), two resident marine mammals in the South China Sea, stranded between 2012 and 2018. Among the 21 target PFASs, perfluorooctane sulfonate and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) predominated in the samples, accounting for 46 and 30% of the total PFASs, respectively. Significantly higher total target PFAS concentrations (p < 0.05) were found in dolphin liver samples [3.23 × 103 ± 2.63 × 103 ng/g dry weight (dw)] than in porpoise liver samples (2.63 × 103 ± 1.10 × 103 ng/g dw). Significant increasing temporal trends (p < 0.05) were found in the concentrations of two emerging PFASs, perfluoroethylcyclohexane sulfonate and 2,3,3,3-tetrafluoro-2-propanoate in porpoises, indicating increasing pollution by these emerging PFASs. Forty-four PFASs from 9 classes were additionally identified by nontarget and suspect screening, among which 15 compounds were reported for the first time in marine mammals. A primary risk assessment showed that the emerging PFAS 6:2 Cl-PFESA could have possible adverse effects in terms of reproductive injury potential on most of the investigated cetaceans.


Assuntos
Ácidos Alcanossulfônicos , Golfinhos , Fluorocarbonos , Toninhas , Poluentes Químicos da Água , Animais , China , Monitoramento Ambiental , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
14.
Environ Sci Technol ; 55(13): 8829-8838, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34142818

RESUMO

Marine lipophilic phycotoxins (MLPs) are produced by toxigenic microalgae and cause foodborne illnesses. However, there is little information on the trophic transfer potential of MLPs in marine food webs. In this study, various food web components including 17 species of mollusks, crustaceans, and fishes were collected for an analysis of 17 representative MLPs, including azaspiracids (AZAs), brevetoxins (BTXs), gymnodimine (GYM), spirolides (SPXs), okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), yessotoxins (YTXs), and ciguatoxins (CTXs). Among the 17 target MLPs, 12, namely, AZAs1-3, BTX3, GYM, SPX1, OA, DTXs1-2, PTX2, YTX, and the YTX derivative homoYTX, were detected, and the total MLP concentrations ranged from 0.316 to 20.3 ng g-1 wet weight (ww). The mean total MLP concentrations generally decreased as follows: mollusks (8.54 ng g-1, ww) > crustaceans (1.38 ng g-1, ww) > fishes (0.914 ng g-1, ww). OA, DTXs, and YTXs were the predominant MLPs accumulated in the studied biota. Trophic dilution of the total MLPs was observed with a trophic magnification factor of 0.109. The studied MLPs might not pose health risks to residents who consume contaminated seafood; however, their potential risks to the ecosystem can be a cause for concern.


Assuntos
Ecossistema , Cadeia Alimentar , Cromatografia Líquida , Monitoramento Ambiental , Ácido Okadáico/análise
15.
Angew Chem Int Ed Engl ; 60(48): 25296-25301, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34525249

RESUMO

Atomically dispersed metal-nitrogen sites show great prospect for the oxygen reduction reaction (ORR), whereas the unsatisfactory adsorption-desorption behaviors of oxygenated intermediates on the metal centers impede improvement of the ORR performance. We propose a new conceptual strategy of introducing sacrificial bonds to remold the local coordination of Fe-Nx sites, via controlling the dynamic transformation of the Fe-S bonds in the Fe-N-C single-atom catalyst. Spectroscopic and theoretical results reveal that the selective cleavage of the sacrificial Fe-S bonds induces the incorporation of the electron-withdrawing oxidized sulfur on the Fe centers. The newly functionalized moieties endow the catalyst with superior ORR activity and remarkable stability, owing to the reduced electron localization around the Fe centers facilitating the desorption of ORR intermediates. These findings provide a unique perspective for precisely controlling the coordination structure of single-atom materials to optimize their activity.

16.
Environ Sci Technol ; 54(7): 4475-4483, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142610

RESUMO

Ciguatoxins (CTXs), produced by toxic benthic dinoflagellates, can bioaccumulate in marine organisms at higher trophic levels. The current study evaluated the uptake and depuration kinetics of some of the most potent CTXs, Pacific CTX-1, -2, and -3 (P-CTX-1, -2, and -3), in orange-spotted grouper (Epinephelus coioides) exposed to 1 ng P-CTXs g-1 fish daily. Over a 30 d exposure, P-CTX-1, -2, and -3 were consistently detected in various tissues of exposed fish, and the concentrations of the total P-CTXs in tissues generally ranked following the order of liver, intestine, gill, skin, brain, and muscle. Relatively higher uptake rates of P-CTX-1 in the groupers were observed compared with those of P-CTX-2 and -3. The depuration rate constants of P-CTX-1, -2, and -3 in different tissues were (0.996-16.5) × 10-2, (1.51-16.1) × 10-2, and (0.557-10.6) × 10-2 d-1, respectively. The accumulation efficiencies of P-CTX-1, -2, and -3 in whole groupers were 6.13%, 2.61%, and 1.15%, respectively. The increasing proportion of P-CTX-1 and the decreasing proportion of P-CTX-2 and -3 over the exposure phase suggest a likely biotransformation of P-CTX-2 and -3 to P-CTX-1, leading to higher levels of P-CTX-1 in fish and possibly a higher risk of CTXs in long-term exposed fish.


Assuntos
Bass , Ciguatoxinas , Animais , Cinética , Músculos , Alimentos Marinhos
17.
Ecotoxicol Environ Saf ; 200: 110718, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464437

RESUMO

Bisphenol A (BPA) has been frequently found in surface waters worldwide, and its estrogenic effects in humans are well documented. Nevertheless, less is known about other bisphenol analogues (BPs), such as bisphenol S (BPS) and bisphenol F (BPF) which are alternative to BPA. There have been few environmental investigations on BPs in developing countries, especially India. In the present study, eight BPs were analyzed, among which BPA, BPS, and BPF were found prevalent in surface water and wastewater from drains collected from 12 states and Delhi-National Capital Territory in India. The detection frequencies of BPA, BPS, and BPF were 67.6%, 41.9%, and 29.7%, respectively in all samples (n = 74). BPA was the predominant species among the three analogues. The highest BPA concentration was observed in the Yamuna River (14,800 ng/L), followed by the Cooum River (1,420 ng/L). The highest concentrations of BPS and BPF were 438 ng/L and 333 ng/L, respectively, both found in wastewater samples. The occurrence of BPS and BPF in nationwide surface water and wastewater samples from India for the first time suggests that new BPs as BPA replacements are being used and released in India. Ecological risk assessment of BPA, BPS and BPF exposure was performed using hazard quotient (HQ) for three aquatic taxonomic groups: algae, crustaceans, and fish, with the last group exhibiting the highest HQs (0.89-148) for BPA exposure. The human exposure risk of BPA through drinking river water was observed negligible in the present study. Our findings indicate the urgent need for, (1) regulations on the use and release of BPs in India, (2) effective processes to remove BPs in wastewater treatment plants, (3) more investigations on the distribution and toxicity of BPs in India, in particular BPA, BPS and BPF, as these analogues were detected at substantial concentration in Indian waters.


Assuntos
Compostos Benzidrílicos/análise , Estrogênios/análise , Fenóis/análise , Sulfonas/análise , Poluentes Químicos da Água/análise , Animais , Crustáceos , Peixes , Humanos , Índia , Medição de Risco , Rios/química , Águas Residuárias/química
18.
Ecotoxicol Environ Saf ; 181: 404-411, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31220780

RESUMO

Disinfection byproducts (DBPs) are generated by disinfectants reacting with organic matters. Previous studies have focused on DBPs in drinking water, but they have not paid sufficient attention to DBPs in sewage treatment plants (STPs), where the sources and compositions of DBPs are much more complicated, and there is a likelihood of more toxic DBPs being formed. In this study, the occurrence of DBPs in six STPs in Hong Kong and the potential impact of the effluents from the STPs on the marine environment were investigated. In STPs, the mean concentrations of the total DBPs ranged from 1160 to 17,019 ng/L, 1562 to 20,795 ng/L, and 289 to 1037 ng/L in the influent, effluent, and seawater, respectively. Trihalomethanes, haloacetonitriles, and trihalophenols were the most commonly detected DBPs, whereas hexachloro-1,3-butadiene and halocarbazoles were not detected in the STPs and in the marine environment in Hong Kong. Secondary treatment efficiently removed DBPs and DBP precursors. Regarding disinfection techniques, UV irradiation showed little effect on the concentrations of DBPs, whereas sodium hypochlorite significantly elevated the levels of both traditional and emerging DBPs. The effluents from two selected STPs that use chlorination have an obvious impact on the marine environment. This work presents the potential sources of DBPs in sewage, the influence of the treatment processes and disinfection techniques employed in STPs on the removal/formation of DBPs, and the impact of the effluents from the STPs on the marine environment. This work also highlights the need for investigating the emerging DBPs generated in STPs and their related environmental concerns.


Assuntos
Desinfetantes/análise , Água do Mar/química , Esgotos/química , Poluentes Químicos da Água/análise , Desinfecção , Halogenação , Hong Kong , Hipoclorito de Sódio , Raios Ultravioleta , Purificação da Água
19.
Environ Sci Technol ; 52(5): 2517-2526, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29397695

RESUMO

Stereoisomeric compositions of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH) were investigated in the blubber of two species of marine mammals, finless porpoises ( Neophocaena phocaenoides) and Indo-Pacific humpback dolphins ( Sousa chinensis), from the South China Sea between 2005 and 2015. The concentrations of ΣHBCD in samples of porpoise ( n = 59) and dolphin ( n = 32) ranged from 97.2 to 6,260 ng/g lipid weight (lw) and from 447 to 45,800 ng/g lw, respectively, while those of ΣTBECH were both roughly 2 orders of magnitude lower. A significant increasing trend of ΣHBCD was found in dolphin blubber over the past decade. The diastereomeric profiles exhibited an absolute predominance of α-HBCD (mostly >90%), while the proportions of four TBECH diastereomers in the samples appeared similar. A preferential enrichment of the (-)-enantiomers of α-, ß-, and γ-HBCD was found in most blubber samples. Interestingly, the body lengths of porpoises showed a significant negative correlation with the enantiomer fractions of α-HBCD. Significant racemic deviations were also observed for α-, γ-, and δ-TBECH enantiomeric pairs. This is the first report of the presence of TBECH enantiomers in the environment. The estimated hazard quotient indicates that there is a potential risk to dolphins due to HBCD exposure.


Assuntos
Hidrocarbonetos Bromados , Poluentes Químicos da Água , Animais , China , Cicloexanos , Monitoramento Ambiental
20.
Environ Sci Technol ; 52(15): 8183-8193, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29939731

RESUMO

Stereoisomers of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) were determined in sediments and 30 marine species in a marine food web to investigate their trophic transfer. Lipid content was found to affect the bioaccumulation of ΣHBCD and ΣTBECH in these species. Elevated biomagnification of each diastereomer from prey species to marine mammals was observed. For HBCD, biota samples showed a shift from γ- to α-HBCD when compared with sediments and technical mixtures; trophic magnification potential of (-)-α- and (+)-α-HBCD were observed in the food web, with trophic magnification factors (TMFs) of 11.8 and 8.7, respectively. For TBECH, the relative abundance of γ- and δ-TBECH exhibited an increasing trend from abiotic matrices to biota samples; trophic magnification was observed for each diastereomer, with TMFs ranging from 1.9 to 3.5. The enantioselective bioaccumulation of the first eluting enantiomer of δ-TBECH in organisms at higher TLs was consistently observed across samples. This is the first report on the trophic transfer of TBECH in the food web. The estimated daily intake of HBCD for Hong Kong residents was approximately 16-times higher than that for the general population in China, and the health risk to local children was high, based on the relevant available reference dose.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Poluentes Químicos da Água , Animais , Criança , China , Monitoramento Ambiental , Cadeia Alimentar , Hong Kong , Humanos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA