Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Neuroinflammation ; 19(1): 27, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109863

RESUMO

BACKGROUND: Resolution of inflammation is an active and regulated process that leads to the clearance of cell debris and immune cells from the challenged tissue, facilitating the recovery of homeostasis. This physiological response is coordinated by endogenous bioactive lipids known as specialized pro-resolving mediators (SPMs). When resolution fails, inflammation becomes uncontrolled leading chronic inflammation and tissue damage, as occurs in multiple sclerosis (MS). METHODS: SPMs and the key biosynthetic enzymes involved in SPM production were analysed by metabololipidomics and qPCR in active brain lesions, serum and peripheral blood mononuclear cells (PBMC) of MS patients as well as in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). We also tested the therapeutic actions of the SPM coined Maresin-1 (MaR1) in EAE mice and studied its impact on inflammation by doing luminex and flow cytometry analysis. RESULTS: We show that levels of MaR1 and other SPMs were below the limit of detection or not increased in the spinal cord of EAE mice, whereas the production of pro-inflammatory eicosanoids was induced during disease progression. Similarly, we reveal that SPMs were undetected in serum and active brain lesion samples of MS patients, which was linked to impaired expression of the enzymes involved in the biosynthetic pathways of SPMs. We demonstrate that exogenous administration of MaR1 in EAE mice suppressed the protein levels of various pro-inflammatory cytokines and reduced immune cells counts in the spinal cord and blood. MaR1 also decreased the numbers of Th1 cells but increased the accumulation of regulatory T cells and drove macrophage polarization towards an anti-inflammatory phenotype. Importantly, we provide clear evidence that administration of MaR1 in mice with clinical signs of EAE enhanced neurological outcomes and protected from demyelination. CONCLUSIONS: This study reveals that there is an imbalance in the production of SPMs in MS patients and in EAE mice, and that increasing the bioavailability of SPMs, such as MaR1, minimizes inflammation and mediates therapeutic actions. Thus, these data suggest that immunoresolvent therapies, such as MaR1, could be a novel avenue for the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Anti-Inflamatórios/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/patologia
2.
Prostaglandins Other Lipid Mediat ; 152: 106482, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33007446

RESUMO

Arachidonic acid (AA) is a precursor of enzymatic and non-enzymatic oxidized products such as prostaglandins, thromboxanes, leukotrienes, lipoxins, and isoprostanes. These products may exert signaling or damaging roles during physiological and pathological conditions, some of them being markers of oxidative stress linked to inflammation. Recent data support the concept that cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 (CYP450) followed by cytosolic and microsomal dehydrogenases can convert AA to lipid-derived electrophiles (LDE). Lipid-derived electrophiles are fatty acid derivatives bearing an electron-withdrawing group that can react with nucleophiles at proteins, DNA, and small antioxidant molecules exerting potent signaling properties. This review aims to describe the formation, sources, and electrophilic anti-inflammatory actions of key mammalian LDE.


Assuntos
Ácido Araquidônico/metabolismo , Animais , Humanos , Oxirredução , Transdução de Sinais
3.
Arch Biochem Biophys ; 679: 108190, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738891

RESUMO

Lipid nitration occurs during physiological and pathophysiological conditions, generating a variety of biomolecules capable to modulate inflammatory cell responses. Low-density lipoprotein (LDL) oxidation has been extensively related to atherosclerotic lesion development while oxidative modifications confer the particle pro-atherogenic features. Herein, we reviewed the oxidation versus nitration of human LDL protein and lipid fractions. We propose that unsaturated fatty acids present in LDL can be nitrated under mild nitration conditions, suggesting an anti-atherogenic role for LDL carrying nitro-fatty acids (NFA).


Assuntos
Ácidos Graxos/metabolismo , Lipoproteínas LDL/metabolismo , Humanos , Óxido Nítrico/metabolismo , Oxirredução
4.
Adv Exp Med Biol ; 1127: 169-179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31140178

RESUMO

α-Synuclein (α-syn) represents the main component of the amyloid aggregates present in Parkinson's disease and other neurodegenerative disorders, collectively named synucleinopathies. Although α-syn is considered a natively unfolded protein, it shows great structural flexibility which allows the protein to adopt highly rich beta-sheet structures like protofibrils, oligomers and fibrils. In addition, this protein can adopt alpha-helix rich structures when interacts with fatty acids or acidic phospholipid vesicle membranes. When analyzing the toxicity of α-syn, protein oligomers are thought to be the main neurotoxic species by mechanisms that involve modification of intracellular calcium levels, mitochondrial and lysosomal function. Extracellular fibrillar α-syn promotes intracellular protein aggregation and shows many toxic effects as well. Nitro-fatty acids (nitroalkenes) represent novel pleiotropic anti-inflammatory signaling mediators that could interact with α-syn to exert unraveling actions. Herein, we demonstrated that nitro-oleic acid (NO2-OA) nitroalkylate α-syn, forming a covalent adduct at histidine-50. The nitroalkylated-α-syn exhibited strong affinity for phospholipid vesicles, moving the protein to the membrane compartment independent of composition of the membrane phospholipids. Moreover, NO2-OA-modified α-syn showed a reduced capacity to induce α-syn fibrillization compared to the non-nitrated oleic acid. From this data we hypothesize that nitroalkenes, in particular NO2-OA, may inhibit α-syn fibril formation exerting protective actions in Parkinson's disease.


Assuntos
Ácido Oleico/química , Doença de Parkinson/patologia , alfa-Sinucleína/química , Amiloide , Humanos , Doenças Neurodegenerativas/patologia , Fosfolipídeos
5.
Arch Biochem Biophys ; 617: 155-161, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27720684

RESUMO

Nitrated derivatives of unsaturated fatty acids (nitro-fatty acids) are being formed and detected in human plasma, cell membranes and tissue, triggering signaling cascades via covalent and reversible post-translational modifications of nucleophilic amino acids in transcriptional regulatory proteins. Arachidonic acid (AA) represents a precursor of potent signaling molecules, i.e., prostaglandins and thromboxanes through enzymatic and non-enzymatic oxidative pathways. Arachidonic acid can be nitrated by reactive nitrogen species leading to the formation of nitro-arachidonic acid (NO2-AA). A critical issue is the influence of NO2-AA on prostaglandin endoperoxide H synthases, modulating inflammatory processes through redirection of AA metabolism and signaling. In this prospective article, we describe the key chemical and biochemical actions of NO2-AA in vascular and astrocytes. This includes the ability of NO2-AA to mediate unique redox signaling anti-inflammatory actions along with its therapeutic potential.


Assuntos
Anti-Inflamatórios/química , Ácido Araquidônico/química , Astrócitos/citologia , Endotélio Vascular/metabolismo , Transdução de Sinais , Animais , Plaquetas/metabolismo , Homeostase , Humanos , Inflamação , Lipídeos/química , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação
7.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1131-1139, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28215702

RESUMO

BACKGROUND: Nitroarachidonic acid (NO2AA) exhibits pleiotropic anti-inflammatory actions in a variety of cell types. We have recently shown that NO2AA inhibits phagocytic NADPH oxidase 2 (NOX2) by preventing the formation of the active complex. Recent work indicates the participation of protein disulfide isomerase (PDI) activity in NOX2 activation. Cysteine (Cys) residues at PDI active sites could be targets for NO2AA- nitroalkylation regulating PDI activity which could explain our previous observation. METHODS: PDI reductase and chaperone activities were assessed using the insulin and GFP renaturation methods in the presence or absence of NO2AA. To determine the covalent reaction with PDI as well as the site of reaction, the PEG-switch assay and LC-MS/MS studies were performed. RESULTS AND CONCLUSIONS: We determined that both activities of PDI were inhibited by NO2AA in a dose- and time- dependent manner and independent from release of nitric oxide. Since nitroalkenes are potent electrophiles and PDI has critical Cys residues for its activity, then formation of a covalent adduct between NO2AA and PDI is feasible. To this end we demonstrated the reversible covalent modification of PDI by NO2AA. Trypsinization of modified PDI confirmed that the Cys residues present in the active site a' of PDI were key targets accounting for nitroalkene modification. GENERAL SIGNIFICANCE: PDI may contribute to NOX2 activation. As such, inhibition of PDI by NO2AA might be involved in preventing NOX2 activation. Future work will be directed to determine if the covalent modifications observed play a role in the reported NO2AA inhibition of NOX2 activity.


Assuntos
Ácido Araquidônico/farmacologia , Cisteína/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Domínio Catalítico , Humanos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Ligação Proteica , Tripsina/metabolismo
8.
Mol Aspects Med ; 89: 101158, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36517273

RESUMO

Nitric oxide (•NO) is an essential molecule able to control and regulate many biological functions. Additionally, •NO bears a potential toxicity or damaging effects under conditions of uncontrolled production, and because of its participation in redox-sensitive pathways and oxidizing reactions. Several plant (poly)phenols present in the diet are able to regulate the enzymes producing •NO (NOSs). In addition, (poly)phenols are implicated in defining •NO bioavailability, especially by regulating NADPH oxidases (NOXs), and the subsequent generation of superoxide and •NO depletion. Nitrolipids are compounds that are present in animal tissues because of dietary consumption, e.g. of olive oil, and/or as result of endogenous production. This endogenous production of nitrolipids is dependent on the nitrate/nitrite presence in the diet. Select nitrolipids, e.g. the nitroalkenes, are able to exert •NO-like signaling actions, and act as •NO reservoirs, becoming relevant for systemic •NO bioavailability. Furthermore, the presence of (poly)phenols in the stomach reduces dietary nitrite to •NO favoring nitrolipids formation. In this review we focus on the capacity of molecules representing these two groups of bioactives, i.e. (poly)phenols and nitrolipids, as relevant participants in •NO metabolism and bioavailability. This participation acquires especial relevance when human homeostasis is lost, for example under inflammatory conditions, in which the protective actions of (poly)phenols and/or nitrolipids have been associated with local and systemic •NO bioavailability.


Assuntos
Nitritos , Fenóis , Animais , Humanos , Nitritos/metabolismo , Nitratos , Óxido Nítrico/metabolismo , Dieta
9.
J Biol Chem ; 286(15): 12891-900, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21266582

RESUMO

Prostaglandin endoperoxide H synthase (PGHS) catalyzes the oxidation of arachidonate to prostaglandin H(2). We have previously synthesized and chemically characterized nitroarachidonic acid (AANO(2)), a novel anti-inflammatory signaling mediator. Herein, the interaction of AANO(2) with PGHS was analyzed. AANO(2) inhibited oxygenase activity of PGHS-1 but not PGHS-2. AANO(2) exhibited time- and concentration-dependent inhibition of peroxidase activity in both PGHS-1 and -2. The plot of k(obs) versus AANO(2) concentrations showed a hyperbolic function with k(inact) = 0.045 s(-1) and K(i)(*app) = 0.019 µM for PGHS-1 and k(inact) = 0.057 s(-1) and K(i)(*app) = 0.020 µM for PGHS-2. Kinetic analysis suggests that inactivation of PGHS by AANO(2) involves two sequential steps: an initial reversible binding event (described by K(i)) followed by a practically irreversible event (K(i)(*app)) leading to an inactivated enzyme. Inactivation was associated with irreversible disruption of heme binding to the protein. The inhibitory effects of AANO(2) were selective because other nitro-fatty acids tested, such as nitrooleic acid and nitrolinoleic acid, were unable to inhibit enzyme activity. In activated human platelets, AANO(2) significantly decreased PGHS-1-dependent thromboxane B(2) formation in parallel with a decrease in platelet aggregation, thus confirming the biological relevance of this novel inhibitory pathway.


Assuntos
Ácidos Araquidônicos/química , Ciclo-Oxigenase 1/química , Inibidores de Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/química , Peroxidase/antagonistas & inibidores , Ácidos Araquidônicos/farmacologia , Plaquetas/enzimologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Relação Dose-Resposta a Droga , Cinética , Agregação Plaquetária/efeitos dos fármacos , Ligação Proteica , Tromboxano B2/biossíntese , Tromboxano B2/química
10.
Biomedicines ; 10(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35327476

RESUMO

Oxylipins play a critical role in regulating the onset and resolution phase of inflammation. Despite inflammation is a pathological hallmark in amyotrophic lateral sclerosis (ALS), the plasma oxylipin profile of ALS patients has not been assessed yet. Herein, we develop an oxylipin profile-targeted analysis of plasma from 74 ALS patients and controls. We found a significant decrease in linoleic acid-derived oxylipins in ALS patients, including 9-hydroxy-octadecadienoic acid (9-HODE) and 13-HODE. These derivatives have been reported as important regulators of inflammation on different cell systems. In addition, some 5-lipoxygenase metabolites, such as 5-hydroxy- eicosatetraenoic acid also showed a significant decrease in ALS plasma samples. Isoprostanes of the F2α family were detected only in ALS patients but not in control samples, while the hydroxylated metabolite 11-HETE significantly decreased. Despite our effort to analyze specialized pro-resolving mediators, they were not detected in plasma samples. However, we found the levels of 14-hydroxy-docosahexaenoic acid, a marker pathway of the Maresin biosynthesis, were also reduced in ALS patients, suggesting a defective activation in the resolution programs of inflammation in ALS. We further analyze oxylipin concentration levels in plasma from ALS patients to detect correlations between these metabolites and some clinical parameters. Interestingly, we found that plasmatic levels of 13-HODE and 9-HODE positively correlate with disease duration, expressed as days since onset. In summary, we developed a method to analyze "(oxy)lipidomics" in ALS human plasma and found new profiles of metabolites and novel lipid derivatives with unknown biological activities as potential footprints of disease onset.

11.
Drug Chem Toxicol ; 34(3): 285-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21649483

RESUMO

Nitric oxide donor tocopherol analogs were found to be incorporated in low-density lipoprotein to release nitric oxide into the hydrophobic core of the lipoprotein, thus inhibiting lipid oxidation processes associated with atheroma plaque formation. Previously, we studied their cytotoxicity against human and murine macrophages as first selection for in vivo studies. Herein, we examined both the in vitro mutagenic and DNA-damage effects of selected compounds to further evaluate drug potential. While the compounds of interest were nongenotoxics in both experimental tests (Ames and alkaline comet), one of the potential blood metabolites exhibited genotoxicity (alkaline comet test), and the furazan derivative was mutagenic (Ames test). Two selected (nitrooxy and furoxan) compounds were studied in long- and short-term in vivo treatment, and in these conditions, animal toxicity was not evidenced, suggesting the possibility of these compounds as potential antiatherogenic drugs.


Assuntos
Aterosclerose/tratamento farmacológico , Mutagênicos/toxicidade , Doadores de Óxido Nítrico/toxicidade , Tocoferóis/toxicidade , Animais , Linhagem Celular , Ensaio Cometa , Relação Dose-Resposta a Droga , Humanos , Injeções Intramusculares , Masculino , Camundongos , Camundongos Endogâmicos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Mutagênicos/química , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/uso terapêutico , Ratos , Ratos Sprague-Dawley , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Relação Estrutura-Atividade , Tocoferóis/química , Tocoferóis/uso terapêutico
12.
J Nutr Biochem ; 94: 108646, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33838229

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO2-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite. Mice fed with a high-fat diet (HF) presented lower plasma NO2-FA levels than normal chow, and circulating concentrations recovered when the HF diet was supplemented with 10% EVOO plus nitrite. Under NO2-FA formation conditions, liver hemoxygenase-1 expression significantly increased while decreased body weight and fat liver accumulation. Mitochondrial dysfunction plays a central role in the pathogenesis of NAFLD while NO2-FA has been shown to protect from mitochondrial oxidative damage. Accordingly, an improvement of respiratory indexes was observed when mice were supplemented with both EVOO plus nitrite. Liver mitochondrial complexes II and V activities were greater in mice with EVOO supplementation and further improved in the presence of nitrite. Overall, our results strongly suggest a positive correlation between NO2-OA formation from EVOO and the observed improvement of mitochondrial function in NAFLD. The formation of NO2-FA can account for the health benefits associated with EVOO consumption.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/farmacologia , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Animais , Composição Corporal , Peso Corporal , Suplementos Nutricionais , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Azeite de Oliva , Tamanho do Órgão
13.
Biochem J ; 417(1): 223-34, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18671672

RESUMO

Nitroalkene derivatives of fatty acids act as adaptive, anti-inflammatory signalling mediators, based on their high-affinity PPARgamma (peroxisome-proliferator-activated receptor gamma) ligand activity and electrophilic reactivity with proteins, including transcription factors. Although free or esterified lipid nitroalkene derivatives have been detected in human plasma and urine, their generation by inflammatory stimuli has not been reported. In the present study, we show increased nitration of cholesteryl-linoleate by activated murine J774.1 macrophages, yielding the mononitrated nitroalkene CLNO2 (cholesteryl-nitrolinoleate). CLNO2 levels were found to increase approximately 20-fold 24 h after macrophage activation with Escherichia coli lipopolysaccharide plus interferon-gamma; this response was concurrent with an increase in the expression of NOS2 (inducible nitric oxide synthase) and was inhibited by the (*)NO (nitric oxide) inhibitor L-NAME (N(G)-nitro-L-arginine methyl ester). Macrophage (J774.1 and bone-marrow-derived cells) inflammatory responses were suppressed when activated in the presence of CLNO2 or LNO2 (nitrolinoleate). This included: (i) inhibition of NOS2 expression and cytokine secretion through PPARgamma and *NO-independent mechanisms; (ii) induction of haem oxygenase-1 expression; and (iii) inhibition of NF-kappaB (nuclear factor kappaB) activation. Overall, these results suggest that lipid nitration occurs as part of the response of macrophages to inflammatory stimuli involving NOS2 induction and that these by-products of nitro-oxidative reactions may act as novel adaptive down-regulators of inflammatory responses.


Assuntos
Ésteres do Colesterol/metabolismo , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Antígenos CD36/metabolismo , Linhagem Celular , Ésteres do Colesterol/síntese química , Ésteres do Colesterol/farmacologia , Ativação Enzimática/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fatores de Necrose Tumoral/metabolismo
14.
Biochimie ; 178: 170-180, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980463

RESUMO

Lipoxygenases (LOX) are non-heme iron-containing enzymes that catalyze regio- and stereo-selective dioxygenation of polyunsaturated fatty acids (PUFA). Mammalian LOXs participate in the eicosanoid cascade during the inflammatory response, using preferentially arachidonic acid (AA) as substrate, for the synthesis of leukotrienes (LT) and other oxidized-lipid intermediaries. This review focus on lipoxygenases (LOX) structural and kinetic implications on both catalysis selectivity, as well as the basic and clinical implications of inhibition and interactions with nitric oxide (•NO) and nitroalkenes pathways. During inflammation •NO levels are increasingly favoring the formation of reactive nitrogen species (RNS). •NO may act itself as an inhibitor of LOX-mediated lipid oxidation by reacting with lipid peroxyl radicals. Besides, •NO may act as an O2 competitor in the LOX active site, thus displaying a protective role on lipid-peroxidation. Moreover, RNS such as nitrogen dioxide (•NO2) may react with lipid-derived species formed during LOX reaction, yielding nitroalkenes (NO2FA). NO2FA represents electrophilic compounds that could exert anti-inflammatory actions through the interaction with critical LOX nucleophilic amino acids. We will discuss how nitro-oxidative conditions may limit the availability of common LOX substrates, favoring alternative routes of PUFA metabolization to anti-inflammatory or pro-resolutive pathways.


Assuntos
Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/farmacocinética , Lipoxigenases/química , Lipoxigenases/metabolismo , Óxido Nítrico/metabolismo , Animais , Biocatálise , Humanos , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Lipoxigenases/genética
15.
Data Brief ; 28: 105037, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909129

RESUMO

Under physiological and pathophysiological conditions, lipid nitration occurs generating nitro-fatty acids (NFA) with pleiotropic activities as modulation of inflammatory cell responses. Foam cell formation and atherosclerotic lesion development have been extensively related to low-density lipoprotein (LDL) oxidation. Considering our manuscript "Fatty acid nitration in human low-density lipoprotein" (https://doi.org/10.1016/j.abb.2019.108190), herein we report the oxidation versus nitration of human LDL protein and lipid fractions. Data is shown on LDL fatty acid nitration, in particular, formation and quantitation of nitro-conjugated linoleic acid (NO2-cLA) under mild nitration conditions. In parallel to NO2-cLA formation, depletion of endogenous antioxidants, protein tyrosine nitration, and carbonyl formation is observed. Overall, our data propose the formation of a potential anti-atherogenic form of LDL carrying NFA.

16.
Biochim Biophys Acta ; 1780(11): 1318-24, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18395525

RESUMO

Protein and lipid nitration represent novel footprints of oxidative and nitrative stress processes. In this review, we first discuss the mechanisms of formation of protein 3-nitrotyrosine and nitrated fatty acids as well as their key biological and signaling actions. Elevation of protein 3-nitrotyrosine levels is associated to tissue injury, and some specific nitrated proteins play a causative role in disease progression; on the other hand, the substantiation on the role of tyrosine nitration on redox signaling is rather scarce. Herein, we also provide evidence to support that the nitration of lipids (i.e. to nitrofatty acids) results in the formation of novel endogenous modulators of redox processes, partially counteracting pro-inflammatory effects of oxidant exposure.


Assuntos
Doença , Metabolismo dos Lipídeos , Proteínas/metabolismo , Transdução de Sinais , Tirosina/análogos & derivados , Animais , Humanos , Oxirredução , Tirosina/metabolismo
17.
Arch Biochem Biophys ; 484(2): 167-72, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19022215

RESUMO

Lipid oxidation and nitration represents a novel area of research of relevance in the understanding of inflammatory processes. Peroxynitrite, the product of the diffusion-limited reaction between nitric oxide and superoxide anion, mediates oxidative modifications in lipid systems including cell membranes and lipoproteins. In this review, we discuss the mechanisms of lipid oxidation and nitration by peroxynitrite as well as the influence of physiological molecules and cell targets to redirect peroxynitrite reactivity. We also provide evidence to support that oxidation/nitration of lipids results in the formation of novel signaling modulators of key lipid-metabolizing enzymes.


Assuntos
Metabolismo dos Lipídeos , Nitratos/metabolismo , Ácido Peroxinitroso/farmacologia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Ciclo-Oxigenase 1/metabolismo , Eicosanoides/metabolismo , Ácidos Graxos/metabolismo , Lipoxigenase/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo
18.
Bioorg Med Chem ; 17(24): 8143-8, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19897374

RESUMO

Nitric oxide-releasing alpha-tocopherol mimetics with LDL-protective activity were designed to maintain the tocopherol substructure necessary for its biochemical recognition by alpha-tocopherol transfer protein. In order to study the molecular interactions to alpha-TTP, theoretical binding studies by means of docking techniques and experimental binding assays, using a fluorescent probe, were performed. Furoxanyl-tocopherol-hybrid analogs 7 and 9 have the best ability to bind to alpha-TTP suggesting that they could be incorporated to LDL in vivo to further release nitric oxide and prevent oxidative modifications.


Assuntos
Antioxidantes/metabolismo , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Tocoferóis/metabolismo , Vitamina E/metabolismo , alfa-Tocoferol , Substituição de Aminoácidos , LDL-Colesterol/química , LDL-Colesterol/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
19.
Free Radic Biol Med ; 144: 176-182, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30922958

RESUMO

Prostaglandin endoperoxide H synthase (PGHS) is a heme-enzyme responsible for the conversion of arachidonic acid (AA) to prostaglandin H2 (PGH2). PGHS have both oxygenase (COX) and peroxidase (POX) activities and is present in two isoforms (PGHS-1 and -2) expressed in different tissues and cell conditions. It has been reported that PGHS activity is inhibited by the nitrated form of AA, nitro-arachidonic acid (NO2AA), which in turn could be synthesized by PGHS under nitro-oxidative conditions. Specifically, NO2AA inhibits COX in PGHS-1 as well as POX in both PGHS-1 and -2, in a dose and time-dependent manner. NO2AA inhibition involves lowering the binding stability and displacing the heme group from the active site. However, the complete mechanism remains to be understood. This review describes the interactions of PGHS with NO2AA, focusing on mechanisms of inhibition and nitration. In addition, using a novel approach combining EPR-spin trapping and mass spectrometry, we described possible intermediates formed during PGHS-2 catalysis and inhibition. This literature revision as well as the results presented here strongly suggest a free radical-dependent inhibitory mechanism of PGHS-2 by NO2AA. This is of relevance towards understanding the underlying mechanism of inhibition of PGHS by NO2AA and its anti-inflammatory potential.


Assuntos
Anti-Inflamatórios/química , Ácido Araquidônico/química , Ciclo-Oxigenase 2/química , Inibidores Enzimáticos/química , Nitrocompostos/química , Prostaglandina H2/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Biocatálise , Ciclo-Oxigenase 2/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Heme/química , Heme/metabolismo , Humanos , Espectrometria de Massas , Nitrocompostos/metabolismo , Nitrocompostos/farmacologia , Prostaglandina H2/antagonistas & inibidores , Prostaglandina H2/biossíntese , Ligação Proteica
20.
Free Radic Biol Med ; 44(11): 1887-96, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18395528

RESUMO

Nitrated derivatives of unsaturated fatty acids are formed under oxidative and nitrative stress conditions, and are detected and structurally characterized in cell membranes, cardiac tissue, human plasma, and urine. Nitro-fatty acids display pleiotropic activities, including modulation of macrophage activation, prevention of leukocyte and platelet activation, and promotion of blood vessel relaxation. However, mechanisms of formation and levels reached in inflammatory milieu are poorly characterized. In this review, we discuss potential mechanisms of formation of nitro-fatty acids and their key chemical and biochemical properties. A major focus is to analyze nitrated lipids as novel signaling mediators leading to secondary changes in protein function via electrophilic-based modifications as well as inhibition of inflammatory cell function, thus representing the convergence of lipid and nitric oxide signaling pathways.


Assuntos
Ácidos Graxos/metabolismo , Nitratos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Humanos , Nitrocompostos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA