Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Am Chem Soc ; 146(9): 5916-5926, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38380514

RESUMO

Investigation of charge transfer needs analytical tools that could reveal this phenomenon, and enables understanding of its effect at the molecular level. Here, we show how the combination of using gold nanoclusters (AuNCs) and different spectroscopic techniques could be employed to investigate the charge transfer of thiolated molecules on gold nanoparticles (AuNP@Mol). It was found that the charge transfer effect in the thiolated molecule could be affected by AuNCs, evidenced by the amplification of surface-enhanced Raman scattering (SERS) signal of the molecule and changes in fluorescence lifetime of AuNCs. Density functional theory (DFT) calculations further revealed that AuNCs could amplify the charge transfer process at the molecular level by pumping electrons to the surface of AuNPs. Finite element method (FEM) simulations also showed that the electromagnetic enhancement mechanism along with chemical enhancement determines the SERS improvement in the thiolated molecule. This study provides a mechanistic insight into the investigation of charge transfer at the molecular level between organic and inorganic compounds, which is of great importance in designing new nanocomposite systems. Additionally, this work demonstrates the potential of SERS as a powerful analytical tool that could be used in nanochemistry, material science, energy, and biomedical fields.

2.
Expert Syst Appl ; 219: 119695, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818390

RESUMO

The outbreak of the COVID-19 pandemic has transpired the global media to gallop with reports and news on the novel Coronavirus. The intensity of the news chatter on various aspects of the pandemic, in conjunction with the sentiment of the same, accounts for the uncertainty of investors linked to financial markets. In this research, Artificial Intelligence (AI) driven frameworks have been propounded to gauge the proliferation of COVID-19 news towards Indian stock markets through the lens of predictive modelling. Two hybrid predictive frameworks, UMAP-LSTM and ISOMAP-GBR, have been constructed to accurately forecast the daily stock prices of 10 Indian companies of different industry verticals using several systematic media chatter indices related to the COVID-19 pandemic alongside several orthodox technical indicators and macroeconomic variables. The outcome of the rigorous predictive exercise rationalizes the utility of monitoring relevant media news worldwide and in India. Additional model interpretation using Explainable AI (XAI) methodologies indicates that a high quantum of overall media hype, media coverage, fake news, etc., leads to bearish market regimes.

3.
Chemistry ; 26(29): 6545-6553, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32142591

RESUMO

Graphite intercalation compounds (GICs) are often used to produce exfoliated or functionalised graphene related materials (GRMs) in a specific solvent. This study explores the formation of the Na-tetrahydrofuran (THF)-GIC and a new ternary system based on dimethylacetamide (DMAc). Detailed comparisons of in situ temperature dependent XRD with TGA-MS and Raman measurements reveal a series of dynamic transformations during heating. Surprisingly, the bulk of the intercalation compound is stable under ambient conditions, trapped between the graphene sheets. The heating process drives a reorganisation of the solvent and Na molecules, then an evaporation of the solvent; however, the solvent loss is arrested by restacking of the graphene layers, leading to trapped solvent bubbles. Eventually, the bubbles rupture, releasing the remaining solvent and creating expanded graphite. These trapped dopants may provide useful property enhancements, but also potentially confound measurements of grafting efficiency in liquid-phase covalent functionalization experiments on 2D materials.

4.
Langmuir ; 34(50): 15396-15402, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30428675

RESUMO

Grafting polymers onto single-walled carbon nanotubes (SWCNTs) usefully alters properties but does not typically yield stable, solvated species directly. Despite the expectation of steric stabilization, a damaging (re)dispersion step is usually necessary. Here, poly(vinyl acetate)s (PVAc's) of varying molecular weights are grafted to individualized, reduced SWCNTs at different concentrations to examine the extent of reaction and degree of solvation. The use of higher polymer concentrations leads to an increase in grafting ratio (weight fraction of grafted polymer relative to the SWCNT framework), approaching the limit of random sequentially adsorbed Flory "mushrooms" on the surface. However, at higher polymer concentrations, a larger percentage of SWCNTs precipitate during the reaction; an effect which is more significant for larger weight polymers. The precipitation is attributed to depletion interactions generated by ungrafted homopolymer overcoming Coulombic repulsion of adjacent like-charged SWCNTs; a simple model is proposed. Larger polymers and greater degrees of functionalization favor stable solvation, but larger and more concentrated homopolymers increase depletion aggregation. By using low concentrations (25 µM) of larger molecular weight PVAc (10 kDa), up to 65% of grafted SWCNTs were retained in solution (at 65 µg mL-1) directly after the reaction.

5.
Angew Chem Int Ed Engl ; 57(39): 12656-12660, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30095209

RESUMO

Two-dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one-pot reductive method to produce solutions of single- and few-layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High-resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.

6.
Small ; 11(36): 4704-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26140363

RESUMO

Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/terapia , Curcumina/química , Ácido Láctico/química , Nanocápsulas/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Animais , Antineoplásicos/administração & dosagem , Apoptose , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Imagem Multimodal , Nanomedicina/métodos , Nanopartículas/química , Transplante de Neoplasias , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
7.
Pharm Res ; 32(10): 3293-308, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26085038

RESUMO

PURPOSE: To formulate f-MWNTs-cationic liposome hybrids for the simultaneous delivery of siPLK1 and doxorubicin to cancer cells. METHOD: f-MWNTs-cationic liposome hybrids were prepared by the thin film hydration method where the lipid film was hydrated with 100 µg/ml or 1 mg/ml of ox-MWNTs-NH3 (+) or MWNTs-NH3 (+) in 5% dextrose. siRNA complexation and protection ability was determined by agarose gel electrophoresis. f-MWNTs and liposome interaction was evaluated using Nile Red (NR) fluorescence spectroscopy. Cellular uptake in A549 cells was assessed by flow cytometry. Silencing of target proteins was determined by Luciferase and MTT assays. Sub-G1 analysis was performed to evaluate apoptosis following co-delivery of siPLK1 and Doxorubicin (Dox). RESULTS: Zeta potential and siRNA complexation profile obtained for all hybrids were comparable to those achieved with cationic liposomes. ox-MWNTs-NH3 (+) showed greater extent of interaction with cationic liposomes compared to MWNTs-NH3 (+). ox-MWNTs-NH3 (+) was able to protect siRNA from nuclease-mediated degradation. Enhanced cellular uptake of both the carrier and loaded siRNA in A549 cell, were observed for this hybrid compared to the liposomal carrier. A synergistic pro-apoptotic effect was obtained when siPLK1 silencing was combined with doxorubicin treatment for the hybrid:siRNA complexes compared to the lipoplexes, in A549 cells in vitro. CONCLUSIONS: f-MWNTs-cationic liposome hybrid designed in this study can serve as a potential vehicle for the co-delivery of siRNA and cytotoxic drugs to cancer cells in vitro.


Assuntos
Cátions/química , Doxorrubicina/química , Lipossomos/química , Nanotubos de Carbono/química , Compostos de Amônio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , RNA Interferente Pequeno/química
8.
Langmuir ; 30(49): 14999-5008, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25409484

RESUMO

A novel, fast, and easy mechano-chemistry-based (dry milling) method has been developed to exfoliate graphene with hydrophobic drugs generating few-layer graphene mesosheets (< 10 nm in thickness and ∼1 µm in width). The electronic properties of the graphitic structure were partially preserved after the milling treatment compared with graphene oxide prepared by Hummers' method. Several characterization techniques such as thermogravimetric analysis, Raman spectroscopy, atomic force microscopy, electron microscopy, and molecular dynamics simulation were used to characterize this material. The drug-exfoliated mesosheets were pharmacologically inactive, offering a new approach for making water-soluble few-layer graphene mesosheets upon dry milling with hydrophobic drugs, mainly used as exfoliating agents.


Assuntos
Anfotericina B/farmacologia , Grafite/química , Água/química , Antibacterianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Solubilidade , Propriedades de Superfície
9.
Heliyon ; 10(1): e23434, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192785

RESUMO

Background and objective: Tracking clean electricity generation in developing economies is highly challenging owing to the influence of turbulent external factors. Clean electricity is a significant enabler of striving toward environmental sustainability. In this research, we aim to model hydro, nuclear, and renewable electricity generation in India through applied predictive modeling. We also strive to uncover the influence of the critical determinants responsible for clean electricity growth. Methodology: We propose a granular predictive framework comprising ensemble empirical mode decomposition, clustering applications in spatial data based on density, including noise, and atom search optimization-based novel optimization methodology to predict absolute figures of clean energy generation. The framework uses a series of socio-economic factors reflecting household demand and industrial growth in India as explanatory variables. Results: The rigorous scrutiny of the predictive framework specifies hydro electricity generation is relatively more predictable during the time horizon influenced by the COVID-19 pandemic. The deployment of dedicated explainable artificial intelligence (AI) tools suggests an increased adoption of clean electricity in selected industrial sectors in India, which broadly governs the evolutionary pattern. Conclusion: The underlying research is the first of its kind to fathom the daily temporal dynamics of clean electricity generation in the Indian context. Consideration of three distinct clean electricity sources during highly volatile time regimes underscores the contribution of the work. The predictive framework survives a stringent performance check, which justifies the robustness of the same. Demand in different industrial sectors in India profoundly influences the growth toward clean electricity.

10.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839672

RESUMO

The use of nanoparticles is crucial for the development of a new generation of nanodevices for clinical applications. Silica-based nanoparticles can be tailored with a wide range of functional biopolymers with unique physicochemical properties thus providing several advantages: (1) limitation of interparticle interaction, (2) preservation of cargo and particle integrity, (3) reduction of immune response, (4) additional therapeutic effects and (5) cell targeting. Therefore, the engineering of advanced functional coatings is of utmost importance to enhance the biocompatibility of existing biomaterials. Herein we will focus on the most recent advances reported on the delivery and therapeutic use of silica-based nanoparticles containing biopolymers (proteins, nucleotides, and polysaccharides) with proven biological effects.

11.
J Mater Chem A Mater ; 10(37): 20121-20127, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36277421

RESUMO

Graphene-related materials are promising supports for electrocatalysts due to their stability and high surface area. Their innate surface chemistries can be controlled and tuned via functionalisation to improve the stability of both the carbon support and the metal catalyst. Functionalised graphenes were prepared using either aryl diazonium functionalisation or non-destructive chemical reduction, to provide groups adapted for platinum deposition. XPS and TGA-MS measurements confirmed the presence of polyethyleneglycol and sulfur-containing functional groups, and provided consistent values for the extent of the reactions. The deposited platinum nanoparticles obtained were consistently around 2 nm via reductive chemistry and around 4 nm via the diazonium route. Although these graphene-supported electrocatalysts provided a lower electrochemical surface area (ECSA), functionalised samples showed enhanced specific activity compared to a commercial platinum/carbon black system. Accelerated stress testing (AST) showed improved durability for the functionalised graphenes compared to the non-functionalised materials, attributed to edge passivation and catalyst particle anchoring.

12.
Small ; 7(5): 665-74, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21290599

RESUMO

Single-walled carbon nanotubes (SWNTs) can be successfully cut with relatively homogeneous sizes using a planetary mill. The optimized conditions produce highly dispersible SWNTs that can be efficiently functionalized in a variety of synthetic ways. As clearly shown by Raman spectroscopy, the milling/cutting procedure compares very favorably with the most common way of purifying SWNTs, namely, treatment with strong oxidizing acids. Moreover a similar milling process can be used to functionalize and cut pristine SWNTs by one-step nitrene chemistry.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Iminas/química , Propriedades de Superfície
13.
Biomater Sci ; 9(22): 7547-7564, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34652351

RESUMO

In this work we describe the preparation and characterization of lecithin-chitosan nanoparticles (L10Ci+), and investigate their ability to deliver the anti-epileptic drug phenytoin (PHT) to mouse brain following intranasal (IN) administration. L10Ci+ were retained in the nasal cavity compared to PHT in PEG200 solution (PHT/PEG), which suffered immediate nasal drainage. PHT was detected in the brain after 5 min of IN administration reaching a maximum of 11.84 ± 2.31 %ID g-1 after 48 hours. L10Ci+ were associated with a higher brain/plasma ratio (Cb/p) compared to the experimental control comprising free PHT injected via the intraperitoneal route (PHT-IP) across all tested time points. Additionally, L10Ci+ led to lower PHT accumulation in the liver and spleen compared to PHT-IP, which is vital for lowering the systemic side effects of PHT. The relatively high drug targeting efficiency (DTE%) of 315.46% and the drug targeting percentage (DTP%) of 68.29%, combined with the increasing anterior-to-posterior gradient of PHT in the brain confirmed the direct nose-to-brain transport of PHT from L10Ci+. Electroencephalogram (EEG) analysis was used to monitor seizure progression. L10Ci+ resulted in a complete seizure suppression after 4 hours of administration, and this inhibition persisted even with an 8-fold reduction of the encapsulated dose compared to the required PHT-IP dose to achieve a similar inhibitory effect due to systemic loss. The presented findings confirm the possibility of using L10Ci+ as a non-invasive delivery system of PHT for the management of epilepsy using reduced doses of PHT.


Assuntos
Epilepsia , Nanopartículas , Animais , Anticonvulsivantes/uso terapêutico , Encéfalo , Epilepsia/tratamento farmacológico , Camundongos , Pentilenotetrazol/uso terapêutico , Fenitoína/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
14.
Chem Sci ; 12(44): 14907-14919, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820107

RESUMO

Here, the locus of functionalisation on graphene-related materials and the progress of the reaction is shown to depend strongly on the starting feedstock. Five characteristically different graphite sources were exfoliated and functionalized using a non-destructive chemical reduction method. These archetypical examples were compared via a model reaction, grafting dodecyl addends, evaluated with TGA-MS, XPS and Raman data. A general increase in grafting ratio (ranging from 1.1 wt% up to 25 wt%) and an improvement in grafting stoichiometry (C/R) were observed as flake radius decreased. Raman spectrum imaging of the functionalised natural flake graphite identified that grafting is directed towards flake edges. This behaviour was further corroborated, at atomistic resolution, by functionalising the graphene layers with bipyridine groups able to complex single platinum atoms. The distribution of these groups was then directly imaged using aberration-corrected HAADF-STEM. Platinum atoms were found to be homogeneously distributed across smaller graphenes; in contrast, a more heterogeneous distribution, with a predominance of edge grafting was observed for larger graphites. These observations show that grafting is directed towards flake edges, but not necessary at edge sites; the mechanism is attributed to the relative inaccessibility of the inner basal plane to reactive moieties, resulting in kinetically driven grafting nearer flake edges. This phenomenology may be relevant to a wide range of reactions on graphenes and other 2d materials.

16.
Org Biomol Chem ; 8(8): 1936-42, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449501

RESUMO

Carbon nanotubes (CNTs) have been readily functionalized by microwave activation using two different reactions affording functional derivatives characterized by two orthogonally protected amino groups. The doubly functionalized CNTs can serve as multipurpose, versatile synthons in materials science and biological applications.


Assuntos
Micro-Ondas , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Análise Espectral Raman
17.
Dalton Trans ; 49(30): 10308-10318, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32643711

RESUMO

Chemical functionalisation is one of the most active areas of graphene research, motivated by fundamental science, the opportunities to adjust or supplement intrinsic properties, and the need to assemble materials for a broad array of applications. Historically, the primary consideration has been the degree of functionalisation but there is growing interest in understanding how and where modification occurs. Reactions may proceed preferentially at edges, defects, or on graphitic faces; they may be correlated, uncorrelated, or anti-correlated with previously grafted sites. A detailed collation of existing literature data indicates that steric effects play a strong role in limiting the extent of reaction. However, the pattern of functionalisation may have important effects on the resulting properties. This article addresses the unifying principles of current graphene functionalisation technologies, with emphasis on understanding and controlling the locus of functionalisation.

18.
RSC Adv ; 10(48): 28992-29009, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35520085

RESUMO

The use of nanoparticles (NPs) for intranasal (IN) drug delivery to the brain represents a hopeful strategy to enhance brain targeting of anti-epileptic drugs. In the present work, chitosan-lecithin NPs loaded with phenytoin (PHT), were prepared using the nano-precipitation method. The spherical nature of the NPs and their stability were confirmed using scanning and transmission electron microscopy, while the average dynamic size and zeta potential were measured using dynamic light scattering. The encapsulation efficiency of PHT was higher than 60% for all prepared NPs. Release studies showed that the amount of released PHT was directly related to the amount of chitosan used. The optimum preparation, L10Ci + was administered via the IN route, and the levels of PHT in the brain were measured in three-time points. Two experimental controls were given via the intraperitoneal (IP) and IN routes. The highest PHT amount reaching 1.01 ± 0.55% for L10Ci +, which was associated with a sustained release of PHT. These preliminary findings show that the IN delivery of PHT-loaded NPs is very promising for managing epilepsy. The direct nose-to-brain approach increases the safety margins of PHT, while the sustained release could improve patient compliance in a clinical setting.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32867380

RESUMO

INTRODUCTION: The relevant scientific literature has confirmed the relationship between emotional intelligence (EI) and mental health. In addition, previous studies have underlined the importance of perceived EI between family members in the construction of one's own EI. Adolescence is considered to be a crucial stage in identity construction and a time when mental health is vulnerable. OBJECTIVES: To analyze the mediating role of self-reported EI on mental health of adolescents and young adults still living in the family home, we considered the relationship between perceived EI in parents and children. METHOD: The sample was comprised of 170 children and their respective fathers and mothers living in the same family home. Self-reported EI was evaluated using the Trait Meta-Mood Scale (TMMS-24), whereas perceived EI was evaluated via the Perceived Emotional Intelligence Scale-24 (PTMM-24) and mental health using the MH-5. RESULTS: Parents' perceived EI of their children also children's perceived EI of their parents has a direct effect on children's mental health and an indirect effect through the EI self-reported by children. We discuss the differences in the role of mothers and fathers in emotional education and its influence on the results. CONCLUSIONS: We highlight the importance of perceived EI among family members, over and above the self-reported EI of each member, for its predictive power on the mental health of children.


Assuntos
Inteligência Emocional , Relações Familiares , Saúde Mental , Relações Pais-Filho , Adolescente , Adulto , Afeto , Criança , Emoções , Humanos , Pessoa de Meia-Idade , Pais , Adulto Jovem
20.
Chem Sci ; 9(1): 209-217, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29629089

RESUMO

A non-destructive and versatile chemical reduction method was used to dissolve and subsequently brominate few-layer graphene sheets (FLGs); the direct covalent attachment of bromine to the graphene framework was demonstrated by X-ray photoelectron spectroscopy (XPS). The brominated few-layer graphenes (FLG-Br) provide a convenient, stable, liquid-phase precursor, suitable for the synthesis of a variety of directly functionalised graphenes. As an example, the FLG-Br species was used to initiate atom transfer radical polymerisation (ATRP), to obtain poly(methyl methacrylate) (PMMA)-grafted graphene (FLG-PMMA), which was six times more dispersible in acetone than controls. In addition, the FLG-Br is active for nucleophilic substitution reactions, as illustrated by the preparation of methoxypolyethylene glycol (mPEG)- and OH-substituted derivatives. The products were characterised by thermogravimetric analysis coupled with mass spectrometry (TGA-MS), XPS and Raman spectroscopy. Grafting ratios (GR) for these polymer-grafted materials varied between 6 and 25%; even at these GRs, all graphene derivatives showed increased solubility in organic solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA