Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Virol J ; 20(1): 200, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658454

RESUMO

BACKGROUND: Measuring specific anti-SARS-CoV-2 antibodies has become one of the main epidemiological tools to survey the ongoing SARS-CoV-2 pandemic, but also vaccination response. The WHO made available a set of well-characterized samples derived from recovered individuals to allow normalization between different quantitative anti-Spike assays to defined Binding Antibody Units (BAU). METHODS: To assess sero-responses longitudinally, a cohort of ninety-nine SARS-CoV-2 RT-PCR positive subjects was followed up together with forty-five vaccinees without previous infection but with two vaccinations. Sero-responses were evaluated using a total of six different assays: four measuring anti-Spike proteins (converted to BAU), one measuring anti-Nucleocapsid proteins and one SARS-CoV-2 surrogate virus neutralization. Both cohorts were evaluated using the Euroimmun Anti-SARS-CoV-2-ELISA anti-S1 IgG and the Roche Elecsys Anti-SARS-CoV-2 anti-S1 assay. RESULTS: In SARS-CoV-2-convalesce subjects, the BAU-sero-responses of Euroimmun Anti-SARS-CoV-2-ELISA anti-S1 IgG and Roche Elecsys Anti-SARS-CoV-2 anti-S1 peaked both at 47 (43-51) days, the first assay followed by a slow decay thereafter (> 208 days), while the second assay not presenting any decay within one year. Both assay values in BAUs are only equivalent a few months after infection, elsewhere correction factors up to 10 are necessary. In contrast, in infection-naive vaccinees the assays perform similarly. CONCLUSION: The results of our study suggest that the establishment of a protective correlate or vaccination booster recommendation based on different assays, although BAU-standardised, is still challenging. At the moment the characteristics of the available assays used are not related, and the BAU-standardisation is unable to correct for that.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Anticorpos Antivirais , Bioensaio , Imunoglobulina G
2.
BMC Infect Dis ; 23(1): 466, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37442952

RESUMO

BACKGROUND: Population-based serological studies allow to estimate prevalence of SARS-CoV-2 infections despite a substantial number of mild or asymptomatic disease courses. This became even more relevant for decision making after vaccination started. The KoCo19 cohort tracks the pandemic progress in the Munich general population for over two years, setting it apart in Europe. METHODS: Recruitment occurred during the initial pandemic wave, including 5313 participants above 13 years from private households in Munich. Four follow-ups were held at crucial times of the pandemic, with response rates of at least 70%. Participants filled questionnaires on socio-demographics and potential risk factors of infection. From Follow-up 2, information on SARS-CoV-2 vaccination was added. SARS-CoV-2 antibody status was measured using the Roche Elecsys® Anti-SARS-CoV-2 anti-N assay (indicating previous infection) and the Roche Elecsys® Anti-SARS-CoV-2 anti-S assay (indicating previous infection and/or vaccination). This allowed us to distinguish between sources of acquired antibodies. RESULTS: The SARS-CoV-2 estimated cumulative sero-prevalence increased from 1.6% (1.1-2.1%) in May 2020 to 14.5% (12.7-16.2%) in November 2021. Underreporting with respect to official numbers fluctuated with testing policies and capacities, becoming a factor of more than two during the second half of 2021. Simultaneously, the vaccination campaign against the SARS-CoV-2 virus increased the percentage of the Munich population having antibodies, with 86.8% (85.5-87.9%) having developed anti-S and/or anti-N in November 2021. Incidence rates for infections after (BTI) and without previous vaccination (INS) differed (ratio INS/BTI of 2.1, 0.7-3.6). However, the prevalence of infections was higher in the non-vaccinated population than in the vaccinated one. Considering the whole follow-up time, being born outside Germany, working in a high-risk job and living area per inhabitant were identified as risk factors for infection, while other socio-demographic and health-related variables were not. Although we obtained significant within-household clustering of SARS-CoV-2 cases, no further geospatial clustering was found. CONCLUSIONS: Vaccination increased the coverage of the Munich population presenting SARS-CoV-2 antibodies, but breakthrough infections contribute to community spread. As underreporting stays relevant over time, infections can go undetected, so non-pharmaceutical measures are crucial, particularly for highly contagious strains like Omicron.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vírus Delta da Hepatite , Vacinas contra COVID-19 , Pandemias , Anticorpos Antivirais
3.
BMC Infect Dis ; 21(1): 925, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34493217

RESUMO

BACKGROUND: In the 2nd year of the COVID-19 pandemic, knowledge about the dynamics of the infection in the general population is still limited. Such information is essential for health planners, as many of those infected show no or only mild symptoms and thus, escape the surveillance system. We therefore aimed to describe the course of the pandemic in the Munich general population living in private households from April 2020 to January 2021. METHODS: The KoCo19 baseline study took place from April to June 2020 including 5313 participants (age 14 years and above). From November 2020 to January 2021, we could again measure SARS-CoV-2 antibody status in 4433 of the baseline participants (response 83%). Participants were offered a self-sampling kit to take a capillary blood sample (dry blood spot; DBS). Blood was analysed using the Elecsys® Anti-SARS-CoV-2 assay (Roche). Questionnaire information on socio-demographics and potential risk factors assessed at baseline was available for all participants. In addition, follow-up information on health-risk taking behaviour and number of personal contacts outside the household (N = 2768) as well as leisure time activities (N = 1263) were collected in summer 2020. RESULTS: Weighted and adjusted (for specificity and sensitivity) SARS-CoV-2 sero-prevalence at follow-up was 3.6% (95% CI 2.9-4.3%) as compared to 1.8% (95% CI 1.3-3.4%) at baseline. 91% of those tested positive at baseline were also antibody-positive at follow-up. While sero-prevalence increased from early November 2020 to January 2021, no indication of geospatial clustering across the city of Munich was found, although cases clustered within households. Taking baseline result and time to follow-up into account, men and participants in the age group 20-34 years were at the highest risk of sero-positivity. In the sensitivity analyses, differences in health-risk taking behaviour, number of personal contacts and leisure time activities partly explained these differences. CONCLUSION: The number of citizens in Munich with SARS-CoV-2 antibodies was still below 5% during the 2nd wave of the pandemic. Antibodies remained present in the majority of SARS-CoV-2 sero-positive baseline participants. Besides age and sex, potentially confounded by differences in behaviour, no major risk factors could be identified. Non-pharmaceutical public health measures are thus still important.


Assuntos
COVID-19 , Pandemias , Seguimentos , Alemanha/epidemiologia , Humanos , Recém-Nascido , Masculino , SARS-CoV-2
4.
Children (Basel) ; 11(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38671622

RESUMO

SARS-CoV-2 serology may be helpful to retrospectively understand infection dynamics in specific settings including kindergartens. We assessed SARS-CoV-2 seroprevalence in individuals connected to kindergartens in Berlin, Germany in September 2021. Children, staff, and household members from 12 randomly selected kindergartens were interviewed on COVID-19 history and sociodemographic parameters. Blood samples were collected on filter paper. SARS-CoV-2 anti-S and anti-N antibodies were assessed using Roche Elecsys. We assessed seroprevalence and the proportion of so far unrecognized SARS-CoV-2 infections. We included 277 participants, comprising 48 (17.3%) kindergarten children, 37 (13.4%) staff, and 192 (69.3%) household members. SARS-CoV-2 antibodies were present in 65.0%, and 52.7% of all participants were vaccinated. Evidence of previous infection was observed in 16.7% of kindergarten children, 16.2% of staff, and 10.4% of household members. Undiagnosed infections were observed in 12.5%, 5.4%, and 3.6%, respectively. Preceding infections were associated with facemask neglect. In conclusion, two-thirds of our cohort were SARS-CoV-2 seroreactive in September 2021, largely as a result of vaccination in adults. Kindergarten children showed the highest proportion of non-vaccine-induced seropositivity and an increased proportion of previously unrecognized SARS-CoV-2 infection. Silent infections in pre-school children need to be considered when interpreting SARS-CoV-2 infections in the kindergarten context.

5.
Microbiol Spectr ; 12(4): e0288523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426747

RESUMO

SARS-CoV-2 spreads pandemically since 2020; in 2021, effective vaccinations became available and vaccination campaigns commenced. Still, it is hard to track the spread of the infection or to assess vaccination success in the broader population. Measuring specific anti-SARS-CoV-2 antibodies is the most effective tool to track the spread of the infection or successful vaccinations. The need for venous-blood sampling however poses a significant barrier for large studies. Dried-blood-spots on filter-cards (DBS) have been used for SARS-CoV-2 serology in our laboratory, but so far not to follow quantitative SARS-CoV-2 anti-spike reactivity in a longitudinal cohort. We developed a semi-automated protocol or quantitative SARS-CoV-2 anti-spike serology from self-sampled DBS, validating it in a cohort of matched DBS and venous-blood samples (n = 825). We investigated chromatographic effects, reproducibility, and carry-over effects and calculated a positivity threshold as well as a conversion formula to determine the quantitative binding units in the DBS with confidence intervals. Sensitivity and specificity reached 96.63% and 97.81%, respectively, compared to the same test performed in paired venous samples. Between a signal of 0.018 and 250 U/mL, we calculated a correction formula. Measuring longitudinal samples during vaccinations, we demonstrated relative changes in titers over time in several individuals and in a longitudinal cohort over four follow-ups. DBS sampling has proven itself for anti-nucleocapsid serosurveys in our laboratory. Similarly, anti-spike high-throughput DBS serology is feasible as a complementary assay. Quantitative measurements are accurate enough to follow titer dynamics in populations also after vaccination campaigns. This work was supported by the Bavarian State Ministry of Science and the Arts; LMU University Hospital, LMU Munich; Helmholtz Center Munich; University of Bonn; University of Bielefeld; German Ministry for Education and Research (proj. nr.: 01KI20271 and others) and the Medical Biodefense Research Program of the Bundeswehr Medical Service. Roche Diagnostics provided kits and machines for analyses at discounted rates. The project is funded also by the European-wide Consortium ORCHESTRA. The ORCHESTRA project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101016167. The views expressed in this publication are the sole responsibility of the author, and the Commission is not responsible for any use that may be made of the information it contains.IMPORTANCESARS-CoV-2 has been spreading globally as a pandemic since 2020. To determine the prevalence of SARS-CoV-2 antibodies among populations, the most effective public health tool is measuring specific anti-SARS-CoV-2 antibodies induced by infection or vaccination. However, conducting large-scale studies that involve venous-blood sampling is challenging due to the associated feasibility and cost issues. A more cost-efficient and less invasive method for SARS-CoV-2 serological testing is using Dried-Blood-Spots on filter cards (DBS). In this paper, we have developed a semi-automated protocol for quantifying SARS-CoV-2 anti-spike antibodies from self-collected DBS. Our laboratory has previously successfully used DBS sampling for anti-nucleocapsid antibody surveys. Likewise, conducting high-throughput DBS serology for anti-spike antibodies is feasible as an additional test that can be performed using the same sample preparation as the anti-nucleocapsid analysis. The quantitative measurements obtained are accurate enough to track the dynamics of antibody levels in populations, even after vaccination campaigns.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Reprodutibilidade dos Testes , COVID-19/diagnóstico , Flebotomia , Anticorpos Antivirais
6.
Viruses ; 16(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39459890

RESUMO

This study analyzes immune responses to SARS-CoV-2 vaccination and infection, including asymptomatic cases, focusing on infection risks during the Omicron wave, particularly among high-risk healthcare workers. In the KoCo-Impf study, we monitored 6088 vaccinated participants in Munich aged 18 and above. From 13 May to 31 July 2022, 2351 participants were follow-uped. Logistic regression models evaluated primary, secondary, and breakthrough infections (BTIs). Roche Elecsys® Anti-SARS-CoV-2 assays detected prior infections (via anti-Nucleocapsid antibodies) and assessed vaccination/infection impact (via anti-Spike antibodies) using dried blood spots. Our findings revealed an anti-Nucleocapsid seroprevalence of 44.1%. BTIs occurred in 38.8% of participants, with reinfections in 48.0%. Follow-up participation was inversely associated with current smoking and non-vaccination, while significantly increasing with age and receipt of three vaccine doses. Larger household sizes and younger age increased infection risks, whereas multiple vaccinations and older age reduced them. Household size and specific institutional subgroups were risk factors for BTIs. The anti-Nucleocapsid value prior to the second infection was significantly associated with reinfection risk. Institutional subgroups influenced all models, underscoring the importance of tailored outbreak responses. The KoCo-Impf study underscores the importance of vaccination, demographic factors, and institutional settings in understanding SARS-CoV-2 infection risks during the Omicron wave.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Pessoal de Saúde , Reinfecção , SARS-CoV-2 , Vacinação , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Risco , Alemanha/epidemiologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Estudos Prospectivos , Reinfecção/imunologia , Reinfecção/epidemiologia , Reinfecção/virologia , Estudos Soroepidemiológicos , Adulto Jovem , Idoso , Adolescente , Infecções Irruptivas
7.
Nat Commun ; 15(1): 3463, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658564

RESUMO

Under-reporting of COVID-19 and the limited information about circulating SARS-CoV-2 variants remain major challenges for many African countries. We analyzed SARS-CoV-2 infection dynamics in Addis Ababa and Jimma, Ethiopia, focusing on reinfection, immunity, and vaccination effects. We conducted an antibody serology study spanning August 2020 to July 2022 with five rounds of data collection across a population of 4723, sequenced PCR-test positive samples, used available test positivity rates, and constructed two mathematical models integrating this data. A multivariant model explores variant dynamics identifying wildtype, alpha, delta, and omicron BA.4/5 as key variants in the study population, and cross-immunity between variants, revealing risk reductions between 24% and 69%. An antibody-level model predicts slow decay leading to sustained high antibody levels. Retrospectively, increased early vaccination might have substantially reduced infections during the delta and omicron waves in the considered group of individuals, though further vaccination now seems less impactful.


Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Humanos , Etiópia/epidemiologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos Soroepidemiológicos , Masculino , Adulto , Feminino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Criança , Idoso , Pré-Escolar , Vacinação , Vacinas contra COVID-19/imunologia , Estudos Retrospectivos , Reinfecção/epidemiologia , Reinfecção/imunologia , Reinfecção/virologia
8.
iScience ; 27(6): 110138, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38974469

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron breakthrough infection (BTI) induced better protection than triple vaccination. To address the underlying immunological mechanisms, we studied antibody and T cell response dynamics during vaccination and after BTI. Each vaccination significantly increased peak neutralization titers with simultaneous increases in circulating spike-specific T cell frequencies. Neutralization titers significantly associated with a reduced hazard rate for SARS-CoV-2 infection. Yet, 97% of triple vaccinees became SARS-CoV-2 infected. BTI further boosted neutralization magnitude and breadth, broadened virus-specific T cell responses to non-vaccine-encoded antigens, and protected with an efficiency of 88% from further infections by December 2022. This effect was then assessed by utilizing mathematical modeling, which accounted for time-dependent infection risk, the antibody, and T cell concentration at any time point after BTI. Our findings suggest that cross-variant protective hybrid immunity induced by vaccination and BTI was an important contributor to the reduced virus transmission observed in Bavaria in late 2022 and thereafter.

9.
Vaccines (Basel) ; 12(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39066383

RESUMO

This study aimed to retrospectively assess the cost-effectiveness of various COVID-19 vaccination strategies in Ethiopia. It involved healthcare workers (HCWs) and community participants; and was conducted through interviews and serological tests. Local SARS-CoV-2 variants and seroprevalence rates, as well as national COVID-19 reports and vaccination status were also analyzed. A cost-effectiveness analysis was performed to determine the most economical vaccination strategies in settings with limited vaccine access and high SARS-CoV-2 seroprevalence. Before the arrival of the vaccines, 65% of HCWs had antibodies against SARS-CoV-2, indicating prior exposure to the virus. Individuals with prior infection exhibited a greater antibody response to COVID-19 vaccines and experienced fewer new infections compared to those without prior infection, regardless of vaccination status (5% vs. 24%, p < 0.001 for vaccinated; 3% vs. 48%, p < 0.001 for unvaccinated). The cost-effectiveness analysis indicated that a single-dose vaccination strategy is optimal in settings with high underlying seroprevalence and limited vaccine availability. This study underscores the need for pragmatic vaccination strategies tailored to local contexts, particularly in high-seroprevalence regions, to maximize vaccine impact and minimize the spread of COVID-19. Implementing a targeted approach based on local seroprevalence information could have helped Ethiopia achieve higher vaccination rates and prevent subsequent outbreaks.

10.
J Clin Virol ; 170: 105622, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38091664

RESUMO

BACKGROUND: SARS-CoV-2 variants of concern (VOC) may result in breakthrough infections (BTIs) in vaccinated individuals. The aim of this study was to investigate the effects of full primary (two-dose) COVID-19 vaccination with wild-type-based SARS-CoV-2 vaccines on symptoms and immunogenicity of SARS-CoV-2 VOC BTIs. METHODS: In a longitudinal multicenter controlled cohort study in Bavaria, Germany, COVID-19 vaccinated and unvaccinated non-hospitalized individuals were prospectively enrolled within 14 days of a PCR-confirmed SARS-CoV-2 infection. Individuals were visited weekly up to 4 times, performing a structured record of medical data and viral load assessment. SARS-CoV-2-specific antibody response was characterized by anti-spike-(S)- and anti-nucleocapsid-(N)-antibody concentrations, anti-S-IgG avidity and neutralization capacity. RESULTS: A total of 300 individuals (212 BTIs, 88 non-BTIs) were included with VOC Alpha or Delta SARS-CoV-2 infections. Full primary COVID-19 vaccination provided a significant effectiveness against five symptoms (relative risk reduction): fever (33 %), cough (21 %), dysgeusia (22 %), dizziness (52 %) and nausea/vomiting (48 %). Full primary vaccinated individuals showed significantly higher 50 % inhibitory concentration (IC50) values against the infecting VOC compared to unvaccinated individuals at week 1 (269 vs. 56, respectively), and weeks 5-7 (1,917 vs. 932, respectively) with significantly higher relative anti-S-IgG avidity (78% vs. 27 % at week 4, respectively). CONCLUSIONS: Full primary COVID-19 vaccination reduced symptom frequencies in non-hospitalized individuals with BTIs and elicited a more rapid and longer lasting neutralization capacity against the infecting VOC compared to unvaccinated individuals. These results support the recommendation to offer at least full primary vaccination to all adults to reduce disease severity caused by immune escape-variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , Infecções Irruptivas , Estudos de Coortes , Estudos Prospectivos , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Vacinação
11.
Hum Mutat ; 34(5): 743-53, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23420636

RESUMO

The THBS4 gene encodes a glycoprotein involved in inflammatory responses and synaptogenesis. THBS4 is expressed at higher levels in the brain of humans compared with nonhuman primates, and the protein accumulates in ß-amyloid plaques. We analyzed THBS4 genetic variability in humans and show that two haplotypes (hap1 and hap2) are maintained by balancing selection and modulate THBS4 expression in lymphocytes. Indeed, the balancing selection region covers a predicted transcriptional enhancer. In humans, but not in macaques and chimpanzees, THBS4 brain expression increases with age, and variants in the balancing selection region interact with sex in influencing THBS4 expression (pinteraction = 0.038), with hap1 homozygous females showing lowest expression. In Alzheimer disease (AD) patients, significant interactions between sex and THBS4 genotype were detected for peripheral gray matter (pinteraction = 0.014) and total gray matter (pinteraction = 0.012) volumes. Similarly to the gene expression results, the interaction is mainly mediated by hap1 homozygous AD females, who show reduced volumes. Thus, the balancing selection target in THBS4 is likely represented by one or more variants that regulate tissue-specific and sex-specific gene expression. The selection signature associated with THBS4 might not be related to AD pathogenesis, but rather to inflammatory responses.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Fatores Sexuais , Trombospondinas/genética , Doença de Alzheimer/patologia , Animais , Sequência de Bases , Encéfalo/patologia , Feminino , Genética Populacional , Haplótipos , Humanos , Masculino , Homologia de Sequência do Ácido Nucleico
12.
BMC Genomics ; 14: 363, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23721540

RESUMO

BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas. RESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla. CONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.


Assuntos
Genômica , Gorilla gorilla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Sequência de Aminoácidos , Animais , Feminino , Heterozigoto , Masculino , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA
13.
Diagnostics (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980332

RESUMO

The currently prevailing variants of SARS-CoV-2 are subvariants of the Omicron variant. The aim of this study was to analyze the effect of mutations in the Spike protein of Omicron on the results Quan-T-Cell SARS-CoV-2 assays and Roche Elecsys anti-SARS-CoV-2 anti-S1. Omicron infected subjects ((n = 37), vaccinated (n = 20) and unvaccinated (n = 17)) were recruited approximately 3 weeks after a positive PCR test. The Quan-T-Cell SARS-CoV-2 assays (EUROIMMUN) using Wuhan and the Omicron adapted antigen assay and a serological test (Roche Elecsys anti-SARS-CoV-2 anti-S1) were performed. Using the original Wuhan SARS-CoV-2 IGRA TUBE, in 19 of 21 tested Omicron infected subjects, a positive IFNy response was detected, while 2 non-vaccinated but infected subjects did not respond. The Omicron adapted antigen tube resulted in comparable results. In contrast, the serological assay detected a factor 100-fold lower median Spike-specific RBD antibody concentration in non-vaccinated Omicron infected patients (n = 12) compared to patients from the pre Omicron era (n = 12) at matched time points, and eight individuals remained below the detection threshold for positivity. For vaccinated subjects, the Roche assay detected antibodies in all subjects and showed a 400 times higher median specific antibody concentration compared to non-vaccinated infected subjects in the pre-Omicron era. Our results suggest that Omicron antigen adapted IGRA stimulator tubes did not improve detection of SARS-CoV-2-specific T-cell responses in the Quant-T-Cell-SARS-CoV-2 assay. In non-vaccinated Omicron infected individuals, the Wuhan based Elecsys anti-SARS-CoV-2 anti-S1 serological assay results in many negative results at 3 weeks after diagnosis.

14.
Viruses ; 15(7)2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37515259

RESUMO

Antibody studies analyze immune responses to SARS-CoV-2 vaccination and infection, which is crucial for selecting vaccination strategies. In the KoCo-Impf study, conducted between 16 June and 16 December 2021, 6088 participants aged 18 and above from Munich were recruited to monitor antibodies, particularly in healthcare workers (HCWs) at higher risk of infection. Roche Elecsys® Anti-SARS-CoV-2 assays on dried blood spots were used to detect prior infections (anti-Nucleocapsid antibodies) and to indicate combinations of vaccinations/infections (anti-Spike antibodies). The anti-Spike seroprevalence was 94.7%, whereas, for anti-Nucleocapsid, it was only 6.9%. HCW status and contact with SARS-CoV-2-positive individuals were identified as infection risk factors, while vaccination and current smoking were associated with reduced risk. Older age correlated with higher anti-Nucleocapsid antibody levels, while vaccination and current smoking decreased the response. Vaccination alone or combined with infection led to higher anti-Spike antibody levels. Increasing time since the second vaccination, advancing age, and current smoking reduced the anti-Spike response. The cumulative number of cases in Munich affected the anti-Spike response over time but had no impact on anti-Nucleocapsid antibody development/seropositivity. Due to the significantly higher infection risk faced by HCWs and the limited number of significant risk factors, it is suggested that all HCWs require protection regardless of individual traits.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Estudos Soroepidemiológicos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Fatores de Risco , Pessoal de Saúde , Imunidade , Imunização , Anticorpos Antivirais , Vacinação
15.
Nat Commun ; 14(1): 2952, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225706

RESUMO

Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4+ and CD8+ T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4+ and CD8+ T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfócitos T CD8-Positivos , Soroconversão , Nucleocapsídeo
16.
Front Immunol ; 13: 1026473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582222

RESUMO

SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Nucleocapsídeo
17.
Virology ; 569: 37-43, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245784

RESUMO

Risk factors for disease progression and severity of SARS-CoV-2 infections require an understanding of acute and long-term virological and immunological dynamics. Fifty-one RT-PCR positive COVID-19 outpatients were recruited between May and December 2020 in Munich, Germany, and followed up at multiple defined timepoints for up to one year. RT-PCR and viral culture were performed and seroresponses measured. Participants were classified applying the WHO clinical progression scale. Short symptom to test time (median 5.0 days; p = 0.0016) and high viral loads (VL; median maximum VL: 3∙108 copies/mL; p = 0.0015) were indicative for viral culture positivity. Participants with WHO grade 3 at baseline had significantly higher VLs compared to those with WHO 1 and 2 (p = 0.01). VLs dropped fast within 1 week of symptom onset. Maximum VLs were positively correlated with the magnitude of Ro-N-Ig seroresponse (p = 0.022). Our results describe the dynamics of VLs and antibodies to SARS-CoV-2 in mild to moderate cases that can support public health measures during the ongoing global pandemic.


Assuntos
COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/fisiologia , Carga Viral , Adolescente , Adulto , COVID-19/complicações , Criança , Estudos de Coortes , Interações Hospedeiro-Patógeno , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Pandemias , Testes Sorológicos/métodos , Avaliação de Sintomas , Adulto Jovem
18.
Nat Commun ; 13(1): 1018, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197461

RESUMO

The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.


Assuntos
COVID-19/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Assistência Ambulatorial , Citocinas/sangue , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interferons/imunologia , Células Matadoras Naturais/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Nasofaringe/imunologia , Nasofaringe/virologia , SARS-CoV-2/fisiologia , Linfócitos T/imunologia
19.
Infect Dis Ther ; 10(3): 1505-1518, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34137000

RESUMO

BACKGROUND: Quantitative serological assays detecting response to SARS-CoV-2 are needed to quantify immunity. This study analyzed the performance and correlation of two quantitative anti-S1 assays in oligo-/asymptomatic individuals from a population-based cohort. METHODS: In total, 362 plasma samples (108 with reverse transcription-polymerase chain reaction [RT-PCR]-positive pharyngeal swabs, 111 negative controls, and 143 with positive serology without confirmation by RT-PCR) were tested with quantitative assays (Euroimmun Anti-SARS-CoV-2 QuantiVac enzyme-linked immunosorbent assay [EI-S1-IgG-quant]) and Roche Elecsys® Anti-SARS-CoV-2 S [Ro-RBD-Ig-quant]), which were compared with each other and confirmatory tests, including wild-type virus micro-neutralization (NT) and GenScript®cPass™. Square roots R of coefficients of determination were calculated for continuous variables and non-parametric tests were used for paired comparisons. RESULTS: Quantitative anti-S1 serology correlated well with each other (true positives, 96%; true negatives, 97%). Antibody titers decreased over time (< 30 to > 240 days after initial positive RT-PCR). Agreement with GenScript-cPass was 96%/99% for true positives and true negatives, respectively, for Ro-RBD-Ig-quant and 93%/97% for EI-S1-IgG-quant. Ro-RBD-Ig-quant allowed distinct separation between positives and negatives, and less non-specific reactivity versus EI-S1-IgG-quant. Raw values (95% CI) ≥ 28.7 U/mL (22.6-36.4) for Ro-RBD-Ig-quant and ≥ 49.8 U/mL (43.4-57.1) for EI-S1-IgG-quant predicted NT > 1:5 in 95% of cases. CONCLUSIONS: Our findings suggest both quantitative anti-S1 assays (EI-S1-IgG-quant and Ro-RBD-Ig-quant) may replace direct neutralization assays in quantitative measurement of immune protection against SARS-CoV-2 in certain circumstances. However, although the mean antibody titers for both assays tended to decrease over time, a higher proportion of Ro-RBD-Ig-quant values remained positive after 240 days.

20.
EBioMedicine ; 70: 103502, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34333234

RESUMO

BACKGROUND: Since 2020 SARS-CoV-2 spreads pandemically, infecting more than 119 million people, causing >2·6 million fatalities. Symptoms of SARS-CoV-2 infection vary greatly, ranging from asymptomatic to fatal. Different populations react differently to the disease, making it very hard to track the spread of the infection in a population. Measuring specific anti-SARS-CoV-2 antibodies is an important tool to assess the spread of the infection or successful vaccinations. To achieve sufficient sample numbers, alternatives to venous blood sampling are needed not requiring medical personnel or cold-chains. Dried-blood-spots (DBS) on filter-cards have been used for different studies, but not routinely for serology. METHODS: We developed a semi-automated protocol using self-sampled DBS for SARS-CoV-2 serology. It was validated in a cohort of matched DBS and venous-blood samples (n = 1710). Feasibility is demonstrated with two large serosurveys with 10247 company employees and a population cohort of 4465 participants. FINDINGS: Sensitivity and specificity reached 99·20% and 98·65%, respectively. Providing written instructions and video tutorials, 99·87% (4465/4471) of the unsupervised home sampling DBS cards could be analysed. INTERPRETATION: DBS-sampling is a valid and highly reliable tool for large scale serosurveys. We demonstrate feasibility and accuracy with a large validation cohort including unsupervised home sampling. This protocol might be of big importance for surveillance in resource-limited settings, providing low-cost highly accurate serology data. FUNDING: Provided by Bavarian State Ministry of Science and the Arts, LMU University-Hospital; Helmholtz-Centre-Munich, German Ministry for Education and Research (project01KI20271); University of Bonn; University of Bielefeld; the Medical Biodefense Research Program of Bundeswehr-Medical-Service; Euroimmun, RocheDiagnostics provided discounted kits and machines.


Assuntos
Anticorpos Antivirais/imunologia , Bioensaio/métodos , Teste Sorológico para COVID-19/métodos , COVID-19/sangue , COVID-19/imunologia , Teste em Amostras de Sangue Seco/métodos , SARS-CoV-2/imunologia , Infecções Assintomáticas , Estudos de Coortes , Humanos , Estudos Longitudinais , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA