Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 41(9): 2324-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26932820

RESUMO

Drugs, notably SSRIs, that elevate brain extracellular 5-HT (5-HTExt) are antidepressants. Unfortunately, most patients fail to remit. Multipronged clinical evidence suggests that elevating 5-HTExt beyond the SSRI effect enhances antidepressant efficacy, but previous such drug strategies had prohibitive limitations. In humans, adjunct treatment with the 5-HT precursor 5-hydroxytryptophan (5-HTP) elevates 5-HTExt beyond the SSRI effect. Small pilot trials suggest that adjunct 5-HTP can confer antidepressant response in treatment-resistant depression (TRD). However, sustained, stable 5-HTExt elevation is required for antidepressant effect; therefore, the rapid absorption and elimination of standard 5-HTP immediate release (IR) likely curtail 5-HTP IR's antidepressant potential. Slow-release (SR) drug delivery can crucially improve efficacy and safety of rapidly absorbed and eliminated compounds. Here we tested in mice the hypothesis that SR delivery will substantially improve 5-HTP's drug properties, by minimizing adverse effects and securing sustained 5-HTExt elevation beyond the SSRI effect. We modeled 5-HTP SR with minipumps, 5-HTP IR with injections, and chronic SSRI with dietary fluoxetine. We tested adjunct 5-HTP SR in wild-type mice and in mice with low brain 5-HT owing to expression of a mutant form of the brain 5-HT synthesis enzyme, tryptophan hydroxylase 2. In both lines of mice, adjunct 5-HTP SR synergized with SSRI to elevate 5-HTExt beyond the SSRI effect. We observed no adverse effect. Adjunct 5-HTP IR could not produce this therapy-like profile, producing transient 5-HTExt spikes and marked adverse effects. Integrated with a body of clinical data, our mouse data suggest that an adjunct 5-HTP SR drug could safely and effectively elevate 5-HTExt beyond the SSRI effect and represent a novel treatment for TRD.


Assuntos
5-Hidroxitriptofano/farmacologia , Encéfalo/efeitos dos fármacos , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos
2.
Psychopharmacology (Berl) ; 231(23): 4527-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24810106

RESUMO

RATIONALE: Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, there by curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence anti-depressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram's inhibition here of. OBJECTIVES: Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. METHODS: Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). RESULTS: We generated mice expressing either the wild-type human SERT (hSERT(WT)) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERT(ALI/VFL+SI/TT)). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration. CONCLUSIONS: We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.


Assuntos
Antidepressivos/farmacocinética , Encéfalo/metabolismo , Citalopram/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Interações Medicamentosas , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Transgênicos , Microdiálise , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA