Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 165(2): 317-30, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058664

RESUMO

BRAF(V600E) mutant colon cancers (CCs) have a characteristic gene expression signature that is also found in some tumors lacking this mutation. Collectively, they are referred to as "BRAF-like" tumors and represent some 20% of CCs. We used a shRNA-based genetic screen focused on genes upregulated in BRAF(V600E) CCs to identify vulnerabilities of this tumor subtype that might be exploited therapeutically. Here, we identify RANBP2 (also known as NUP358) as essential for survival of BRAF-like, but not for non-BRAF-like, CC cells. Suppression of RANBP2 results in mitotic defects only in BRAF-like CC cells, leading to cell death. Mechanistically, RANBP2 silencing reduces microtubule outgrowth from the kinetochores, thereby inducing spindle perturbations, providing an explanation for the observed mitotic defects. We find that BRAF-like CCs display far greater sensitivity to the microtubule poison vinorelbine both in vitro and in vivo, suggesting that vinorelbine is a potential tailored treatment for BRAF-like CCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Vimblastina/análogos & derivados , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Células Cultivadas , Neoplasias do Colo/classificação , Neoplasias do Colo/tratamento farmacológico , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Transplante de Neoplasias , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Vimblastina/administração & dosagem , Vimblastina/farmacologia , Vinorelbina
2.
PLoS Genet ; 19(2): e1010645, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36780433

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1010150.].

3.
PLoS Genet ; 18(4): e1010150, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442950

RESUMO

Proximity-dependent labeling approaches such as BioID have been a great boon to studies of protein-protein interactions in the context of cytoskeletal structures such as centrosomes which are poorly amenable to traditional biochemical approaches like immunoprecipitation and tandem affinity purification. Yet, these methods have so far not been applied extensively to invertebrate experimental models such as C. elegans given the long labeling times required for the original promiscuous biotin ligase variant BirA*. Here, we show that the recently developed variant TurboID successfully probes the interactomes of both stably associated (SPD-5) and dynamically localized (PLK-1) centrosomal components. We further develop an indirect proximity labeling method employing a GFP nanobody-TurboID fusion, which allows the identification of protein interactors in a tissue-specific manner in the context of the whole animal. Critically, this approach utilizes available endogenous GFP fusions, avoiding the need to generate multiple additional strains for each target protein and the potential complications associated with overexpressing the protein from transgenes. Using this method, we identify homologs of two highly conserved centriolar components, Cep97 and BLD10/Cep135, which are present in various somatic tissues of the worm. Surprisingly, neither protein is expressed in early embryos, likely explaining why these proteins have escaped attention until now. Our work expands the experimental repertoire for C. elegans and opens the door for further studies of tissue-specific variation in centrosome architecture.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Biotinilação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Centríolos , Centrossomo , Proteínas Serina-Treonina Quinases
4.
Cell Cycle ; 13(15): 2370-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483188

RESUMO

Sister chromatid separation creates a sudden loss of tension on kinetochores, which could, in principle, re-activate the spindle checkpoint in anaphase. This so-called "anaphase problem" is probably avoided by timely inactivation of cyclin B1-Cdk1, which may prevent the spindle tension sensing Aurora B kinase from destabilizing kinetochore-microtubule interactions as they lose tension in anaphase. However, exactly how spindle checkpoint re-activation is prevented remains unclear. Here, we investigated how different degrees of cyclin B1 stabilization affected the spindle checkpoint in metaphase and anaphase. Cells expressing a strongly stabilized (R42A) mutant of cyclin B1 degraded APC/C(Cdc20) substrates normally, showing that checkpoint release was not inhibited by high cyclin B1-Cdk1 activity. However, after this initial wave of APC/C(Cdc20) activity, the spindle checkpoint returned in cells with uncohesed sister chromatids. Expression of a lysine mutant of cyclin B1 that is degraded only slightly inefficiently allowed a normal metaphase-to-anaphase transition. Strikingly, however, the spindle checkpoint returned in cells that had not degraded the cyclin B1 mutant 10-15 min after anaphase onset. When cyclin B1 remained in late anaphase, cytokinesis stalled, and translocation of INCENP from separated sister chromatids to the spindle midzone was blocked. This late anaphase arrest required the activity of Aurora B and Mps1. In conclusion, our results reveal that complete removal of cyclin B1 is essential to prevent the return of the spindle checkpoint following sister chromatid disjunction. Speculatively, increasing activity of APC/C(Cdc20) in late anaphase helps to keep cyclin B1 levels low.


Assuntos
Ciclina B1/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteólise , Troca de Cromátide Irmã/fisiologia , Aurora Quinase B/metabolismo , Proteína Quinase CDC2 , Proteínas Cdc20/metabolismo , Linhagem Celular Tumoral , Ciclina B1/genética , Quinases Ciclina-Dependentes/metabolismo , Humanos , Lisina/metabolismo , Proteína 1 de Superfície de Merozoito/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA