Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
EMBO Rep ; 25(4): 1987-2014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454158

RESUMO

α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.


Assuntos
Remodelação Ventricular , alfa-MSH , Camundongos , Animais , alfa-MSH/farmacologia , Receptores da Corticotropina , Receptores de Melanocortina , Cardiomegalia/genética , Fibrose
2.
FASEB J ; 38(17): e70034, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39248019

RESUMO

The function of hydroxysteroid dehydrogenase 12 (HSD17B12) in lipid metabolism is poorly understood. To study this further, we created mice with hepatocyte-specific knockout of HSD17B12 (LiB12cKO). From 2 months on, these mice showed significant fat accumulation in their liver. As they aged, they also had a reduced whole-body fat percentage. Interestingly, the liver fat accumulation did not result in the typical formation of large lipid droplets (LD); instead, small droplets were more prevalent. Thus, LiB12KO liver did not show increased macrovesicular steatosis with the increasing fat content, while microvesicular steatosis was the predominant feature in the liver. This indicates a failure in the LD expansion. This was associated with liver damage, presumably due to lipotoxicity. Notably, the lipidomics data did not support an essential role of HSD17B12 in fatty acid (FA) elongation. However, we did observe a decrease in the quantity of specific lipid species that contain FAs with carbon chain lengths of 18 and 20 atoms, including oleic acid. Of these, phosphatidylcholine and phosphatidylethanolamine have been shown to play a key role in LD formation, and a limited amount of these lipids could be part of the mechanism leading to the dysfunction in LD expansion. The increase in the Cidec expression further supported the deficiency in LD expansion in the LiB12cKO liver. This protein is crucial for the fusion and growth of LDs, along with the downregulation of several members of the major urinary protein family of proteins, which have recently been shown to be altered during endoplasmic reticulum stress.


Assuntos
Fígado Gorduroso , Hepatócitos , Gotículas Lipídicas , Camundongos Knockout , Animais , Camundongos , Gotículas Lipídicas/metabolismo , Hepatócitos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , Metabolismo dos Lipídeos , Peso Corporal , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Ácidos Graxos/metabolismo
3.
Hum Reprod ; 37(4): 806-821, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037941

RESUMO

STUDY QUESTION: Does direct kisspeptin signaling in the oocyte have a role in the control of follicular dynamics and ovulation? SUMMARY ANSWER: Kisspeptin signaling in the oocyte plays a relevant physiological role in the direct control of ovulation; oocyte-specific ablation of kisspeptin receptor, Gpr54, induces a state of premature ovulatory failure in mice that recapitulates some features of premature ovarian insufficiency (POI). WHAT IS KNOWN ALREADY: Kisspeptins, encoded by the Kiss1 gene, are essential for the control of ovulation and fertility, acting primarily on hypothalamic GnRH neurons to stimulate gonadotropin secretion. However, kisspeptins and their receptor, Gpr54, are also expressed in the ovary of different mammalian species, including humans, where their physiological roles remain contentious and poorly characterized. STUDY DESIGN, SIZE, DURATION: A novel mouse line with conditional ablation of Gpr54 in oocytes, named OoGpr54-/-, was generated and studied in terms of follicular and ovulatory dynamics at different age-points of postnatal maturation. A total of 59 OoGpr54-/- mice and 47 corresponding controls were analyzed. In addition, direct RNA sequencing was applied to ovarian samples from 8 OoGpr54-/- and 7 control mice at 6 months of age, and gonadotropin priming for ovulatory induction was conducted in mice (N = 7) from both genotypes. PARTICIPANTS/MATERIALS, SETTING, METHODS: Oocyte-selective ablation of Gpr54 in the oocyte was achieved in vivo by crossing a Gdf9-driven Cre-expressing transgenic mouse line with a Gpr54 LoxP mouse line. The resulting OoGpr54-/- mouse line was subjected to phenotypic, histological, hormonal and molecular analyses at different age-points of postnatal maturation (Day 45, and 2, 4, 6 and 10-11 months of age), in order to characterize the timing of puberty, ovarian follicular dynamics and ovulation, with particular attention to identification of features reminiscent of POI. The molecular signature of ovaries from OoGpr54-/- mice was defined by direct RNA sequencing. Ovulatory responses to gonadotropin priming were also assessed in OoGpr54-/- mice. MAIN RESULTS AND THE ROLE OF CHANCE: Oocyte-specific ablation of Gpr54 caused premature ovulatory failure, with some POI-like features. OoGpr54-/- mice had preserved puberty onset, without signs of hypogonadism. However, already at 2 months of age, 40% of OoGpr54-/- females showed histological features reminiscent of ovarian failure and anovulation. Penetrance of the phenotype progressed with age, with >80% and 100% of OoGpr54-/- females displaying complete ovulatory failure by 6- and 10 months, respectively. This occurred despite unaltered hypothalamic Gpr54 expression and gonadotropin levels. Yet, OoGpr54-/- mice had decreased sex steroid levels. While the RNA signature of OoGpr54-/- ovaries was dominated by the anovulatory state, oocyte-specific ablation of Gpr54 significantly up- or downregulated of a set of 21 genes, including those encoding pituitary adenylate cyclase-activating polypeptide, Wnt-10B, matrix-metalloprotease-12, vitamin A-related factors and calcium-activated chloride channel-2, which might contribute to the POI-like state. Notably, the anovulatory state of young OoGpr54-/- mice could be rescued by gonadotropin priming. LARGE SCALE DATA: N/A. . LIMITATIONS, REASONS FOR CAUTION: Conditional ablation of Gpr54 in oocytes unambiguously caused premature ovulatory failure in mice; yet, the ultimate molecular mechanisms for such state of POI can be only inferred on the basis of RNAseq data and need further elucidation, since some of the molecular changes observed in OoGpr54-/- ovaries were secondary to the anovulatory state. Direct translation of mouse findings to human disease should be made with caution since, despite the conserved expression of Kiss1/kisspeptin and Gpr54 in rodents and humans, our mouse model does not recapitulate all features of common forms of POI. WIDER IMPLICATIONS OF THE FINDINGS: Deregulation of kisspeptin signaling in the oocyte might be an underlying, and previously unnoticed, cause for some forms of POI in women. STUDY FUNDING/COMPETING INTEREST(S): This work was primarily supported by a grant to M.P. and M.T.-S. from the FiDiPro (Finnish Distinguished Professor) Program of the Academy of Finland. Additional financial support came from grant BFU2017-83934-P (M.T.-S.; Ministerio de Economía y Competitividad, Spain; co-funded with EU funds/FEDER Program), research funds from the IVIRMA International Award in Reproductive Medicine (M.T.-S.), and EFSD Albert Renold Fellowship Programme (S.T.R.). The authors have no conflicts of interest to declare in relation to the contents of this work. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Anovulação , Kisspeptinas , Animais , Feminino , Humanos , Kisspeptinas/genética , Mamíferos/metabolismo , Camundongos , Oócitos/metabolismo , Ovulação
4.
Am J Physiol Endocrinol Metab ; 319(3): E494-E508, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32691632

RESUMO

Hydroxysteroid 17ß dehydrogenase 12 (HSD17B12) is suggested to be involved in the elongation of very long chain fatty acids. Previously, we have shown a pivotal role for the enzyme during mouse development. In the present study we generated a conditional Hsd17b12 knockout (HSD17B12cKO) mouse model by breeding mice homozygous for a floxed Hsd17b12 allele with mice expressing the tamoxifen-inducible Cre recombinase at the ROSA26 locus. Gene inactivation was induced by administering tamoxifen to adult mice. The gene inactivation led to a 20% loss of body weight within 6 days, associated with drastic reduction in both white (83% males, 75% females) and brown (65% males, 60% females) fat, likely due to markedly reduced food and water intake. Furthermore, the knockout mice showed sickness behavior and signs of liver toxicity, specifically microvesicular hepatic steatosis and increased serum alanine aminotransferase (4.6-fold in males, 7.7-fold in females). The hepatic changes were more pronounced in females than males. Proinflammatory cytokines, such as interleukin-6 (IL-6), IL-17, and granulocyte colony-stimulating factor, were increased in the HSD17B12cKO mice indicating an inflammatory response. Serum lipidomics study showed an increase in the amount of dihydroceramides, despite the dramatic overall loss of lipids. In line with the proposed role for HSD17B12 in fatty acid elongation, we observed accumulation of ceramides, dihydroceramides, hexosylceramides, and lactosylceramides with shorter than 18-carbon fatty acid side chains in the serum. The results indicate that HSD17B12 is essential for proper lipid homeostasis and HSD17B12 deficiency rapidly results in fatal systemic inflammation and lipolysis in adult mice.


Assuntos
17-Hidroxiesteroide Desidrogenases/fisiologia , Homeostase/fisiologia , 17-Hidroxiesteroide Desidrogenases/genética , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Comportamento Animal , Peso Corporal/genética , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Comportamento Alimentar , Feminino , Homeostase/genética , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipidômica , Hepatopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Caracteres Sexuais , Tamoxifeno/farmacologia
5.
FASEB J ; : fj201800211R, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799790

RESUMO

Thyroid function is controlled by thyroid-stimulating hormone (TSH), which binds to its G protein-coupled receptor [thyroid-stimulating hormone receptor (TSHR)] on thyrocytes. TSHR can potentially couple to all G protein families, but it mainly activates the Gs- and Gq/11-mediated signaling cascades. To date, there is a knowledge gap concerning the role of the individual G protein cascades in thyroid pathophysiology. Here, we demonstrate that the thyrocyte-specific deletion of Gs-protein α subunit (Gαs) in adult mice [tamoxifen-inducible Gs protein α subunit deficient (iTGαsKO) mice] rapidly impairs thyrocyte function and leads to hypothyroidism. Consequently, iTGαsKO mice show reduced food intake and activity. However, body weight and the amount of white adipose tissue were decreased only in male iTGαsKO mice. Unexpectedly, hyperplastic follicles and papillary thyroid cancer-like tumor lesions with increased proliferation and slightly increased phospho-ERK1/2 staining were found in iTGαsKO mice at an older age. These tumors developed from nonrecombined thyrocytes still expressing Gαs in the presence of highly elevated serum TSH. In summary, we report that partial thyrocyte-specific Gαs deletion leads to hypothyroidism but also to tumor development in thyrocytes with remaining Gαs expression. Thus, these mice are a novel model to elucidate the pathophysiological consequences of hypothyroidism and TSHR/Gs/cAMP-mediated tumorigenesis.-Patyra, K., Jaeschke, H., Löf, C., Jännäri, M., Ruohonen, S. T., Undeutsch, H., Khalil, M., Kero, A., Poutanen, M., Toppari, J., Chen, M., Weinstein, L. S., Paschke, R., Kero, J. Partial thyrocyte-specific Gαs deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice.

6.
FASEB J ; 32(6): 3434-3447, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401633

RESUMO

Hydroxysteroid (17ß) dehydrogenases (HSD17Bs) form an enzyme family characterized by their ability to catalyze reactions in steroid and lipid metabolism. In the present study, we characterized the phenotype of HSD17B13-knockout (HSD17B13KO) mice deficient in Hsd17b13. In these studies, hepatic steatosis was detected in HSD17B13KO male mice, indicated by histologic analysis and by the increased triglyceride concentration in the liver, whereas reproductive performance and serum steroid concentrations were normal in HSD17B13KO mice. In line with these changes, the expression of key proteins in fatty acid synthesis, such as FAS, acetyl-CoA carboxylase 1, and SCD1, was increased in the HSD17B13KO liver. Furthermore, the knockout liver showed an increase in 2 acylcarnitines, suggesting impaired mitochondrial ß-oxidation in the presence of unaltered malonyl CoA and AMPK expression. The glucose tolerance did not differ between wild-type and HSD17B13KO mice in the presence of lower levels of glucose 6-phosphatase in HSD17B13KO liver compared with wild-type liver. Furthermore, microgranulomas and increased portal inflammation together with up-regulation of immune response genes were observed in HSD17B13KO mice. Our data indicate that disruption of Hsd17b13 impairs hepatic-lipid metabolism in mice, resulting in liver steatosis and inflammation, but the enzyme does not play a major role in the regulation of reproductive functions.-Adam, M., Heikelä, H., Sobolewski, C., Portius, D., Mäki-Jouppila, J., Mehmood, A., Adhikari, P., Esposito, I., Elo, L. L., Zhang, F.-P., Ruohonen, S. T., Strauss, L., Foti, M., Poutanen, M. Hydroxysteroid (17ß) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice.


Assuntos
17-Hidroxiesteroide Desidrogenases/deficiência , Fígado Gorduroso/enzimologia , Metabolismo dos Lipídeos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Oxirredução , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
7.
Neuroendocrinology ; 107(4): 324-339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30041171

RESUMO

The alpha2A-adrenoceptors (α2A-ARs) are Gi-coupled receptors, which prejunctionally inhibit the release of norepinephrine (NE) and epinephrine (Epi), and postjunctionally inhibit insulin secretion and lipolysis. We have earlier shown that α2A-/- mice display sympathetic hyperactivity, hyperinsulinemia and improved glucose tolerance. Here we employed α2A-/- mice and placed the mice on a high-fat diet (HFD) to test the hypothesis that lack of α2A-ARs protects from diet-induced obesity and type 2 diabetes (T2D). In addition, a high-caloric diet was combined with running wheel exercise to test the interaction of diet and exercise. HFD was obesogenic in both genotypes, but α2A-/- mice accumulated less visceral fat than the wild-type controls, were protected from T2D, and their insulin secretion was unaltered by the diet. Lack of α2A-ARs is associated with an increased sympatho-adrenal tone, which resulted in increased energy expenditure and fat oxidation rate potentiated by HFD. Fittingly, α2A-/- mice displayed enhanced lipolytic responses to Epi, and increased faecal lipids suggesting altered fat mobilization and absorption. Subcutaneous white fat appeared to be thermogenically more active (measured as Ucp1 mRNA expression) in α2A-/- mice, and brown fat showed an increased response to NE. Exercise was effective in reducing total body adiposity and increasing lean mass in both genotypes, but there was a significant diet-genotype interaction, as even modestly increased physical activity combined with lack of α2A-AR signalling promoted weight loss more efficiently than exercise with normal α2A-AR function. These results suggest that blockade of α2A-ARs may be exploited to reduce visceral fat and to improve insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Hiperinsulinismo/genética , Lipólise/genética , Obesidade Abdominal/genética , Receptores Adrenérgicos alfa 2/genética , Adiposidade/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Doença/genética , Hiperinsulinismo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade Abdominal/metabolismo , Regulação para Cima/genética , Redução de Peso/genética
9.
Neuroendocrinology ; 96(1): 51-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22327786

RESUMO

BACKGROUND AND AIMS: Insulin secretion is controlled by pancreatic α(2A)-adrenoceptors. Mice lacking α(2A)-adrenoceptors (α(2A)AR(-/-) mice) show hyperinsulinaemia, reduced blood glucose levels and improved glucose tolerance. METHODS: In the present study, we used α(2AC)AR(-/-), α(2C)AR(-/-) and α(2A)AR(-/-) mice and a mouse line with adrenergic cell-specific expression of α(2A)-adrenoceptors (lacking these receptors in non-adrenergic cells), and their wild-type (WT) controls, to assess the glucoregulatory role of the α(2C)-adrenoceptor subtype in vivo. Glucose and insulin tolerance tests were performed and blood glucose and serum insulin levels were determined after fasting and glucose stimulation. Plasma catecholamines were also measured. In addition, the effect of pretreatment with (±)-propranolol was determined in α(2C)AR(-/-) mice. RESULTS: α(2AC)AR(-/-) mice had a similar glucose and insulin phenotype as α(2A)AR(-/-) mice and mice with restored α(2A)-autoreceptors, suggesting that only deletion of postsynaptic α(2A)-adrenoceptors has major effects on glucose disposition. However, α(2AC)AR(-/-) mice were more sensitive to the glucose-lowering effect of insulin than WT mice. This was not observed in α(2A)AR(-/-) mice. The α(2C)AR(-/-) mice showed impaired glucose tolerance that was reversed by pretreatment with (±)-propranolol. No difference in insulin secretion was observed in α(2C)AR(-/-) mice compared with WT animals. CONCLUSION: The results underline that depletion of postsynaptic pancreatic α(2A)-adrenoceptors has major effects on the regulation of glucose homeostasis in α(2AC)AR(-/-) and α(2A)AR(-/-) mice. Deletion of the α(2C) subtype leads to increased adrenaline secretion and has the potential to increase blood glucose levels via enhanced glycogenolysis.


Assuntos
Homeostase , Hiperglicemia/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Glicemia/efeitos dos fármacos , Catecolaminas/sangue , Epinefrina/sangue , Jejum , Homeostase/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Insulina/sangue , Masculino , Camundongos , Camundongos Knockout , Norepinefrina/sangue , Propranolol/farmacologia , Receptores Adrenérgicos alfa 2/deficiência , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
PLoS Comput Biol ; 7(10): e1002257, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046124

RESUMO

Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede ß-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Modelos Biológicos , Adiponectina/metabolismo , Animais , Análise por Conglomerados , Biologia Computacional , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Lisofosfatidilcolinas/metabolismo , Masculino , Redes e Vias Metabólicas , Metaboloma/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Fatores de Risco
11.
Fertil Steril ; 114(3): 465-474, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771258

RESUMO

In humans and other mammals, a hallmark of female reproductive function is the capacity to episodically release fertilizable oocytes under the precise control of a cascade of hormonal regulators that interplay in a cyclic manner within the hypothalamic-pituitary-ovarian (HPO) axis. Although the basic elements of this neurohormonal system were disclosed several decades before, a major breakthrough in our understanding of how the HPO axis is controlled during the lifespan came in the first decade of the 21st century, when the reproductive dimension of kisspeptins was disclosed by seminal studies documenting that genetic inactivation of the kisspeptin pathway is linked to central hypogonadism and infertility. Kisspeptins are a family of peptides, encoded by the Kiss1 gene, that operate via the surface receptor, Gpr54 (also called Kiss1r), to regulate virtually all aspects of reproduction in both sexes. The primary site of action of kisspeptins is the hypothalamus, where Kiss1 neurons engage in the precise control of the pulsatile release of GnRH to modulate gonadotropin secretion and, thereby, ovarian function. Nonetheless, additional sites of action of kisspeptins within the HPO axis, including the pituitary and the ovary, have been proposed; yet, the physiologic relevance of such extrahypothalamic actions of kisspeptins is still a matter of debate. In this review, we summarize the current consensus knowledge and open questions on the sites of action, physiologic roles, and eventual therapeutic implications of kisspeptins in the control of the female reproductive axis.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Kisspeptinas/metabolismo , Ovário/metabolismo , Ovulação , Animais , Feminino , Regulação da Expressão Gênica , Hormônios Esteroides Gonadais/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/genética , Gravidez , Transdução de Sinais , Útero/metabolismo
12.
Neuroendocrinology ; 89(3): 351-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19122447

RESUMO

BACKGROUND AND AIMS: Neuropeptide Y (NPY) is a sympathetic neurotransmitter co-stored and co-released with noradrenaline and adrenaline. We have constructed a novel NPY transgenic mouse model (OE-NPY(DBH) mouse) where targeted overexpression results in increased levels of NPY in the brainstem and adrenal glands. The present study was aimed to understand the role of NPY released from sympathetic nerves and brain noradrenergic neurons in regulation of blood pressure, and behavioral responses to stress. METHODS: Blood pressure was measured by radiotelemetry in conscious male OE-NPY(DBH) and wild-type mice during surgical stress and in baseline conditions. Plasma and adrenal gland catecholamine levels were measured at baseline. Acute immobilization and cold exposure were used to study the plasma levels of NPY and corticosterone in stress, and brown adipose tissue thermogenic activity was measured with [(3)H]GDP binding after cold. RESULTS: Here, we demonstrate that sympathoadrenal activity is enhanced in the OE-NPY(DBH) mice. Blood pressure during surgical stress was significantly increased in comparison with wild-type controls. Furthermore, OE-NPY(DBH) mice showed sexually dimorphic NPY responses to stress, and an anxiolytic-like behavior in elevated plus-maze and light-dark tests. CONCLUSION: This study shows that the overactive noradrenergic NPY system plays a role in regulation of blood pressure and adaptive responses to stress, and may be a link between chronic stress and adiposity-associated disturbances in metabolism.


Assuntos
Epinefrina/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Norepinefrina/metabolismo , Estresse Fisiológico , Tecido Adiposo Marrom/metabolismo , Glândulas Suprarrenais/metabolismo , Animais , Ansiedade , Comportamento Animal , Pressão Sanguínea/fisiologia , Temperatura Corporal/fisiologia , Corticosterona/sangue , Guanosina Difosfato/metabolismo , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Fatores Sexuais
13.
Metabolism ; 98: 84-94, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226351

RESUMO

BACKGROUND: Kisspeptins, encoded by Kiss1, have emerged as essential regulators of puberty and reproduction by primarily acting on GnRH neurons, via their canonical receptor, Gpr54. Mounting, as yet fragmentary, evidence strongly suggests that kisspeptin signaling may also participate in the control of key aspects of body energy and metabolic homeostasis. However, characterization of such metabolic dimension of kisspeptins remains uncomplete, without an unambiguous discrimination between the primary metabolic actions of kisspeptins vs. those derived from their ability to stimulate the secretion of gonadal hormones, which have distinct metabolic actions on their own. In this work, we aimed to tease apart primary vs. secondary effects of kisspeptins in the control of key aspects of metabolic homeostasis using genetic models of impaired kisspeptin signaling and/or gonadal hormone status. METHODS: Body weight (BW) gain and composition, food intake and key metabolic parameters, including glucose tolerance, were comparatively analyzed, in lean and obesogenic conditions, in mice lacking kisspeptin signaling due to global inactivation of Gpr54 (displaying profound hypogonadism; Gpr54-/-) vs. Gpr54 null mice with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54-/-Tg), where kisspeptin signaling elsewhere than in GnRH neurons is ablated but gonadal function is preserved. RESULTS: In male mice, global elimination of kisspeptin signaling resulted in decreased BW, feeding suppression and increased adiposity, without overt changes in glucose tolerance, whereas Gpr54-/- female mice displayed enhanced BW gain at adulthood, increased adiposity and perturbed glucose tolerance, despite reduced food intake. Gpr54-/-Tg rescued mice showed altered postnatal BW gain in males and mildly perturbed glucose tolerance in females, with intermediate phenotypes between control and global KO animals. Yet, body composition and leptin levels were similar to controls in gonadal-rescued mice. Exposure to obesogenic insults, such as high fat diet (HFD), resulted in exaggerated BW gain and adiposity in global Gpr54-/- mice of both sexes, and worsening of glucose tolerance, especially in females. Yet, while rescued Gpr54-/-Tg males displayed intermediate BW gain and feeding profiles and impaired glucose tolerance, rescued Gpr54-/-Tg females behaved as controls, except for a modest deterioration of glucose tolerance after ovariectomy. CONCLUSION: Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE: Kisspeptins, master regulators of reproduction, may also participate in the control of key aspects of body energy and metabolic homeostasis; yet, the nature of such metabolic actions remains debatable, due in part to the fact that kisspeptins modulate gonadal hormones, which have metabolic actions on their own. By comparing the metabolic profiles of two mouse models with genetic inactivation of kisspeptin signaling but different gonadal status (hypogonadal vs. preserved gonadal function), we provide herein a systematic dissection of gonadal-dependent vs. -independent metabolic actions of kisspeptins. Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. These data pave the way for future analyses addressing the eventual contribution of altered kisspeptin signaling in the development of metabolic alterations, especially in conditions linked to reproductive dysfunction.


Assuntos
Peso Corporal/fisiologia , Hormônios Gonadais/fisiologia , Homeostase/fisiologia , Kisspeptinas/fisiologia , Transdução de Sinais/fisiologia , Animais , Dieta , Ingestão de Alimentos , Feminino , Intolerância à Glucose/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Ovariectomia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Aumento de Peso/genética
14.
Sci Rep ; 9(1): 12415, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455807

RESUMO

The intermediate filament (IF) cytoskeleton has been proposed to regulate morphogenic processes by integrating the cell fate signaling machinery with mechanical cues. Signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through the Notch pathway regulates arterial remodeling in response to changes in blood flow. Here we show that the IF-protein vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic forces. Vimentin is important for Notch transactivation by ECs and vimentin knockout mice (VimKO) display disrupted VSMC differentiation and adverse remodeling in aortic explants and in vivo. Shear stress increases Jagged1 levels and Notch activation in a vimentin-dependent manner. Shear stress induces phosphorylation of vimentin at serine 38 and phosphorylated vimentin interacts with Jagged1 and increases Notch activation potential. Reduced Jagged1-Notch transactivation strength disrupts lateral signal induction through the arterial wall leading to adverse remodeling. Taken together we demonstrate that vimentin forms a central part of a mechanochemical transduction pathway that regulates multilayer communication and structural homeostasis of the arterial wall.


Assuntos
Aorta/metabolismo , Hemodinâmica , Receptores Notch/metabolismo , Transdução de Sinais , Estresse Fisiológico , Remodelação Vascular , Vimentina/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Notch/genética , Ativação Transcricional , Vimentina/genética
15.
Front Pharmacol ; 9: 319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674968

RESUMO

Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y2-receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y2-receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y2-receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPYDßH) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y2-receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPYDßH and WT mice feeding on chow or Western diet. Treatment with Y2-receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y2-receptors induced obesity in WT mice, whereas OE-NPYDßH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y2-receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y2-receptor antagonism has beneficial effects on metabolic status.

16.
Pharmacol Res Perspect ; 6(2): e00389, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29541475

RESUMO

Hepatic insulin resistance and increased gluconeogenesis are known therapeutic targets of metformin, but the role of hepatic glycogen in the pathogenesis of diabetes is less clear. Mouse model of neuropeptide Y (NPY) overexpression in noradrenergic neurons (OE-NPYDßH) with a phenotype of late onset obesity, hepatosteatosis, and prediabetes was used to study early changes in glycogen structure and metabolism preceding prediabetes. Furthermore, the effect of the anti-hyperglycemic agent, metformin (300 mg/kg/day/4 weeks in drinking water), was assessed on changes in glycogen metabolism, body weight, fat mass, and glucose tolerance. Glycogen structure was characterized by cytofluorometric analysis in isolated hepatocytes and mRNA expression of key enzymes by qPCR. OE-NPYDßH mice displayed decreased labile glycogen fraction relative to stabile fraction (the intermediate form of glycogen) suggesting enhanced glycogen cycling. This was supported by decreased filling of glucose residues in the 10th outer tier of the glycogen molecule, which suggests accelerated glycogen phosphorylation. Metformin reduced fat mass gain in both genotypes, but glucose tolerance was improved mostly in wild-type mice. However, metformin inhibited glycogen accumulation and normalized the ratio between glycogen structures in OE-NPYDßH mice indicating decreased glycogen synthesis. Furthermore, the presence of glucose residues in the 11th tier together with decreased glycogen phosphorylase expression suggested inhibition of glycogen degradation. In conclusion, structural changes in glycogen of OE-NPYDßH mice point to increased glycogen metabolism, which may predispose them to prediabetes. Metformin treatment normalizes these changes and suppresses both glycogen synthesis and phosphorylation, which may contribute to its preventive effect on the onset of diabetes.


Assuntos
Neurônios Adrenérgicos/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Glicogênio/biossíntese , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Neuropeptídeo Y/genética , Estado Pré-Diabético/metabolismo , Neurônios Adrenérgicos/metabolismo , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos Transgênicos , Fosforilação , Regulação para Cima
17.
J Endocrinol ; 234(1): 57-72, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28468933

RESUMO

A gain-of-function polymorphism in human neuropeptide Y (NPY) gene (rs16139) associates with metabolic disorders and earlier onset of type 2 diabetes (T2D). Similarly, mice overexpressing NPY in noradrenergic neurons (OE-NPYDBH) display obesity and impaired glucose metabolism. In this study, the metabolic syndrome-like phenotype was characterized and mechanisms of impaired hepatic fatty acid, cholesterol and glucose metabolism in pre-obese (2-month-old) and obese (4-7-month-old) OE-NPYDBH mice were elucidated. Susceptibility to T2D was assessed by subjecting mice to high caloric diet combined with low-dose streptozotocin. Contribution of hepatic Y1-receptor to the phenotype was studied using chronic treatment with an Y1-receptor antagonist, BIBO3304. Obese OE-NPYDBH mice displayed hepatosteatosis and hypercholesterolemia preceded by decreased fatty acid oxidation and accelerated cholesterol synthesis. Hyperinsulinemia in early obese state inhibited pyruvate- and glucose-induced hyperglycemia, and deterioration of glucose metabolism of OE-NPYDBH mice developed with aging. Furthermore, streptozotocin induced T2D only in OE-NPYDBH mice. Hepatic inflammation was not morphologically visible, but upregulated hepatic anti-inflammatory pathways and increased 8-isoprostane combined with increased serum resistin and decreased interleukin 10 pointed to increased NPY-induced oxidative stress that may predispose OE-NPYDBH mice to insulin resistance. Chronic treatment with BIBO3304 did not improve the metabolic status of OE-NPYDBH mice. Instead, downregulation of beta-1-adrenoceptors suggests indirect actions of NPY via inhibition of sympathetic nervous system. In conclusion, changes in hepatic fatty acid, cholesterol and glucose metabolism favoring energy storage contribute to the development of NPY-induced metabolic syndrome, and the effect is likely mediated by changes in sympathetic nervous system activity.


Assuntos
Neurônios Adrenérgicos/metabolismo , Expressão Gênica , Síndrome Metabólica/etiologia , Neuropeptídeo Y/genética , Neuropeptídeo Y/fisiologia , Animais , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Ingestão de Energia , Metabolismo Energético , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Glucose/metabolismo , Hipercolesterolemia/etiologia , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeo Y/efeitos adversos , Obesidade/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/fisiologia , Sistema Nervoso Simpático/fisiopatologia
18.
Sci Rep ; 7(1): 16406, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180785

RESUMO

HSD17B1 is a steroid metabolising enzyme. We have previously generated knockout mice that had the entire coding region of Hsd17b1 replaced with lacZ-neo cassette (Hsd17b1-LacZ/Neo mice). This resulted in a 90% reduction of HSD17B1 activity, associated with severe subfertility in the knockout females. The present study indicates that Hsd17b1-LacZ/Neo male mice have a metabolic phenotype, including reduced adipose mass, increased lean mass and lipid accumulation in the liver. During the characterisation of this metabolic phenotype, it became evident that the expression of the Naglu gene, located closely upstream of Hsd17b1, was severely reduced in all tissues analysed. Similar results were obtained from Hsd17b1-LacZ mice after removing the neo cassette from the locus or by crossing the Hsd17b1-LacZ/Neo mice with transgenic mice constitutively expressing human HSD17B1. The deficiency of Naglu caused the accumulation of glycosaminoglycans in all studied mouse models lacking the Hsd17b1 gene. The metabolic phenotypes of the Hsd17b1 knockout mouse models were recapitulated in Naglu knockout mice. Based on the data we propose that the Hsd17b1 gene includes a regulatory element controlling Naglu expression and the metabolic phenotype in mice lacking the Hsd17b1 genomic region is caused by the reduced expression of Naglu rather than the lack of Hsd17b1.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Alelos , Deleção de Genes , Estudos de Associação Genética , Doenças por Armazenamento dos Lisossomos/genética , Fenótipo , Animais , Modelos Animais de Doenças , Expressão Gênica , Loci Gênicos , Glicosaminoglicanos/metabolismo , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo
19.
Neuropeptides ; 55: 31-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26681068

RESUMO

Neuropeptide Y (NPY) in noradrenergic neurons plays an important role in modulating the release and effects of catecholamines in a prolonged stress response. Among other functions, it controls energy metabolism. Transgenic expression of Npy in noradrenergic neurons in mice allowed showing that it is critical for diet- and stress-induced gain in fat mass. When overexpressed, NPY in noradrenergic neurons increases adiposity in gene-dose-dependent fashion, and leads to metabolic disorders such as impaired glucose tolerance. However, the mechanisms of obesity seem to be different in mice heterozygous and homozygous for the Npy transgene. While in heterozygous mice the adipogenic effect of NPY is important, in homozygous mice inhibition of sympathetic tone leading to decreased lipolytic activity and impaired brown fat function, as well as increased endocannabinoid levels contribute to obesity. The mouse model provides novel insight to the mechanisms of human diseases with increased NPY due to chronic stress or gain-of-function gene variants, and a tool for development of novel therapeutics.


Assuntos
Neurônios Adrenérgicos/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Obesidade/genética
20.
Basic Clin Pharmacol Toxicol ; 117(6): 392-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26132275

RESUMO

Pharmacological antagonism and genetic depletion of pancreatic α2A-adrenoceptors increase insulin secretion in mice and enhance the insulinotropic action of glibenclamide, a representative of the sulphonylurea class of insulin secretagogues used in the therapy of type 2 diabetes. Antagonism of α2-adrenoceptors in the central nervous system (CNS) causes tachycardia and hypertension, making generalized α2-adrenoceptor blockade unfavourable for clinical use despite its potential to decrease blood glucose levels. The purpose of this study was to test the acute effects of the peripherally acting α2-adrenoceptor antagonist MK-467 alone and in combination with glibenclamide in non-diabetic C57BL/6N mice. Cardiovascular safety was assessed in freely moving mice with radiotelemetry. Dose-dependent decreases in blood glucose and increases in plasma insulin concentrations were seen with the combination of MK-467 and glibenclamide; the combinations were much more potent than glibenclamide or MK-467 alone. Furthermore, MK-467 had no effect on mean arterial pressure or heart rate in freely moving mice and did not prevent the centrally mediated hypotensive effect of the α2-adrenoceptor agonist medetomidine. Thus, peripheral blockade of α2-adrenoceptors does not evoke the same cardiovascular adverse effects as antagonism of CNS α2-adrenoceptors. The current results indicate that the combined use of small doses of a peripherally acting α2-adrenoceptor antagonist with a sulphonylurea drug could provide a novel option for the treatment of type 2 diabetes, especially in patients with increased tonic α2-adrenoceptor-mediated inhibition of insulin secretion.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Glicemia/efeitos dos fármacos , Glibureto/farmacologia , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/farmacologia , Quinolizinas/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/toxicidade , Animais , Pressão Arterial/efeitos dos fármacos , Biomarcadores/sangue , Glicemia/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Glibureto/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Hipoglicemia/sangue , Hipoglicemiantes/toxicidade , Insulina/sangue , Masculino , Medetomidina/farmacologia , Camundongos Endogâmicos C57BL , Quinolizinas/toxicidade , Telemetria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA