Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 213: 112068, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636470

RESUMO

Glyphosate-based formulations are the most commonly used herbicides worldwide with the risk of potential contamination of aquatic bodies. The present study assessed the response of four marine crustaceans to three different brands of herbicides Roundup®Platinum, Efesto® and Taifun® MK CL.T, under two selected temperatures of 20 °C and 30 °C. The harpacticoid copepod Tigriopus fulvus, the anostracan Artemia franciscana, the amphipod Corophium insidiosum and the isopod Sphaeroma serratum were chosen as testing organisms. Effects of herbicides and temperatures were assessed by estimating lethal concentrations. The results showed that the high temperature rises the toxicity of glyphosate with an increase of mortality of all the tested species. This is an important aspect for future risk assessments of pesticides under global climate change scenarios. Efesto® resulted the most toxic brand, showing C. insidiosum the most sensitive with 96 h-LC50 values of 3.25 mg/L acid equivalent (a.e.) at 30 °C and 7.94 mg/L a.e. at 20 °C followed by T. fulvus while A. franciscana and S. serratum were the less sensitive. This study provides important information for assessing the toxic effects of three different brands of glyphosate-based herbicides on non-target marine organisms suggesting that they should be carefully managed to minimize any negative impact on marine organisms.


Assuntos
Artemia/fisiologia , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Artemia/efeitos dos fármacos , Glicina/análogos & derivados , Medição de Risco , Alimentos Marinhos , Temperatura , Glifosato
2.
Environ Sci Pollut Res Int ; 30(22): 61672-61681, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933130

RESUMO

Pharmaceuticals can be considered a global threat to aquatic ecosystems due to their pseudo-persistence and their potential toxicity towards non-target species. Amoxicillin (AMX) and carbamazepine (CBZ) and their mixture (1:1) were investigated on the marine copepod Tigriopus fulvus (Fischer, 1860) considering both acute and chronic endpoints. While acute and chronic exposure did not directly affect survival, reproductive endpoints were affected like the mean egg hatching time that was significantly longer than the negative control for treatments with AMX (0.789 ± 0.079 µg/L), CBZ (8.88 ± 0.89 µg/L), and AMX and CMZ as a mixture (1.03 ± 0.10 µg/L and 0.941 ± 0.094 µg/L), in that order.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Amoxicilina/toxicidade , Ecossistema , Reprodução , Carbamazepina/toxicidade , Poluentes Químicos da Água/toxicidade
3.
Environ Sci Pollut Res Int ; 29(55): 83554-83566, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35764734

RESUMO

Microplastic debris from direct and indirect human activities is considered a major threat to the marine biodiversity mainly due to its abundance, durability, persistence, and ability to accumulate contaminants from the environment. Derelict tubular plastic nets of various colours (blue (BN), yellow (YN), green (GN), pink (PN), and white (WN) net), used to distinguish mussel farming owners, were collected by scuba-dive from the Mar Piccolo of Taranto (Ionian Sea). All nets were made of polypropylene. Investigations looked for potential acute (mortality) and sub-chronic (mortality, larval development and moult release number, and adult percentage after 5-9 days) effects on Tigriopus fulvus nauplii considering both whole plastics (microplastic (MP), 50 mg/L) and leachates (12.5-100%). Acute test determined a median lethal concentration (LC50) only for BN for both MPs (107 mg/L) and leachates (50.1%). The prolonged exposure (5 days) to microplastics did not affect the T. fulvus survival. After 9 days, YN and BN decreased of approximately 100% larval development.


Assuntos
Bivalves , Copépodes , Poluentes Químicos da Água , Animais , Humanos , Plásticos , Microplásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
4.
Gels ; 6(4)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081416

RESUMO

Poly(N-isopropylacrylamide) (PNIPAM) hydrogel microparticles with different core-shell morphologies have been designed, while maintaining an unvaried chemical composition: a morphology with (i) an un-crosslinked core with a crosslinked shell of PNIPAM chains and (ii) PNIPAM chains crosslinked to form the core with a shell consisting of tethered un-crosslinked PNIPAM chains to the core. Both morphologies with two different degrees of crosslinking have been assessed by confocal microscopy and tested with respect to their temperature responsivity and deformation by applying an osmotic stress. The thermal and mechanical behavior of these architectures have been framed within a Flory-Rehner modified model in order to describe the microgel volume shrinking occurring as response to a temperature increase or an osmotic perturbation. This study provides a background for assessing to what extent the mechanical features of the microgel particle surface affect the interactions occurring at the interface of a microgel particle with a cell, in addition to the already know ligand/receptor interaction. These results have direct implications in triggering a limited phagocytosis of microdevices designed as injectable drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA