Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6406-6413, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436039

RESUMO

In this work, for the first time 3D Ti-Nb meshes of different composition, i.e., Ti, Ti-1Nb, Ti-5Nb, and Ti-10 Nb, were produced by direct ink writing. This additive manufacturing method allows tuning of the mesh composition by simple blending of pure Ti and Nb powders. The 3D meshes are extremely robust with a high compressive strength, giving potential use in photocatalytic flow-through systems. After successful wireless anodization of the 3D meshes toward Nb-doped TiO2 nanotube (TNT) layers using bipolar electrochemistry, they were employed for the first time for photocatalytic degradation of acetaldehyde in a flow-through reactor built based on ISO standards. Nb-doped TNT layers with low concentrations of Nb show superior photocatalytic performance compared with nondoped TNT layers due to the lower amount of recombination surface centers. High concentrations of Nb lead to an increased number of recombination centers within the TNT layers and reduce the photocatalytic degradation rates.

2.
Photochem Photobiol Sci ; 21(12): 2127-2138, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35982381

RESUMO

TiO2 particles of high photocatalytic activity immobilised on various substrates usually suffer from low mechanical stability. This can be overcome by the utilisation of an inorganic binder and/or incorporation in a robust hydrophobic matrix based on rare-earth metal oxides (REOs). Furthermore, intrinsic hydrophobicity of REOs may result in an increased affinity of TiO2-REOs composites to non-polar aqueous pollutants. Therefore, in the present work, three methods were used for the fabrication of composite TiO2/CeO2 films for photocatalytic removal of dye Acid Orange 7 and the herbicide monuron, as representing polar and non-polar pollutants, respectively. In the first method, the composition of a paste containing photoactive TiO2 particles and CeCl3 or Ce(NO3)3 as CeO2 precursors was optimised. This paste was deposited on glass by doctor blading. The second method consisted of the deposition of thin layers of CeO2 by spray coating over a particulate TiO2 photocatalyst layer (prepared by drop casting or electrophoresis). Both approaches lead to composite films of similar photoactivity that of the pure TiO2 layer, nevertheless films made by the first approach revealed better mechanical stability. The third method comprised of modifying a particulate TiO2 film by an overlayer based on colloidal SiO2 and tetraethoxysilane serving as binders, TiO2 particles and cerium oxide precursors at varying concentrations. It was found that such an overlayer significantly improved the mechanical properties of the resulting coating. The use of cerium acetylacetonate as a CeO2 precursor showed only a small increase in photocatalytic activity. On the other hand, deposition of SiO2/TiO2 dispersions containing CeO2 nanoparticles resulted in significant improvement in the rate of photocatalytic removal of the herbicide monuron.


Assuntos
Dióxido de Silício , Poluentes da Água
3.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38323486

RESUMO

Nontransgenic New Genomic Techniques (NGTs) have emerged as a promising tool for food industries, allowing food cultures to contribute to an innovative, safe, and more sustainable food system. NGTs have the potential to be applied to microorganisms, delivering on challenging performance traits like texture, flavour, and an increase of nutritional value. This paper brings insights on how nontransgenic NGTs applied to food cultures could be beneficial to the sector, enabling food industries to generate innovative, safe, and sustainable products for European consumers. Microorganisms derived from NGTs have the potentials of becoming an important contribution to achieve the ambitious targets set by the European 'Green Deal' and 'Farm to Fork' policies. To encourage the development of NGT-derived microorganisms, the current EU regulatory framework should be adapted. These technologies allow the introduction of a precise, minimal DNA modification in microbial genomes resulting in optimized products carrying features that could also be achieved by spontaneous natural genetic evolution. The possibility to use NGTs as a tool to improve food safety, sustainability, and quality is the bottleneck in food culture developments, as it currently relies on lengthy natural evolution strategies or on untargeted random mutagenesis.


Assuntos
Indústria Alimentícia , Genômica , Mutagênese
4.
PLoS One ; 12(11): e0187590, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145427

RESUMO

Microplastic particles are ubiquitous not only in marine but also in freshwater ecosystems. However, the impacts of microplastics, consisting of a large variety of synthetic polymers, on freshwater organisms remains poorly understood. We examined the effects of two polymer mixtures on the morphology, life history and on the molecular level of the waterflea Daphnia magna (three different clones). Microplastic particles of ~40 µm were supplied at a low concentration (1% of the food particles) leading to an average of ~30 particles in the digestive tract which reflects a high microplastic contamination but still resembles a natural situation. Neither increased mortality nor changes on the morphological (body length, width and tail spine length) or reproductive parameters were observed for adult Daphnia. The analyses of juvenile Daphnia revealed a variety of small and rather subtle responses of morphological traits (body length, width and tail spine length). For adult Daphnia, alterations in expression of genes related to stress responses (i.e. HSP60, HSP70 & GST) as well as of other genes involved in body function and body composition (i.e. SERCA) were observed already 48h after exposure. We anticipate that the adverse effects of microplastic might be influenced by many additional factors like size, shape, type and even age of the particles and that the rather weak effects, as detected in a laboratory, may lead to reduced fitness in a natural multi-stressor environment.


Assuntos
Daphnia/fisiologia , Animais , Daphnia/genética , Daphnia/crescimento & desenvolvimento , Regulação da Expressão Gênica , Estágios do Ciclo de Vida , Reação em Cadeia da Polimerase em Tempo Real
5.
Parasit Vectors ; 9(1): 293, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27206473

RESUMO

BACKGROUND: Microsporidia are spore-forming obligate intracellular parasites that include both emerging pathogens and economically important disease agents. However, little is known about the genetic diversity of microsporidia. Here, we investigated patterns of geographic population structure, intraspecific genetic variation, and recombination in two microsporidian taxa that commonly infect cladocerans of the Daphnia longispina complex in central Europe. Taken together, this information helps elucidate the reproductive mode and life-cycles of these parasite species. METHODS: Microsporidia-infected Daphnia were sampled from seven drinking water reservoirs in the Czech Republic. Two microsporidia species (Berwaldia schaefernai and microsporidium lineage MIC1) were sequenced at the internal transcribed spacer (ITS) region, using the 454 pyrosequencing platform. Geographical structure analyses were performed applying Fisher's exact tests, analyses of molecular variance, and permutational MANOVA. To evaluate the genetic diversity of the ITS region, the number of polymorphic sites and Tajima's and Watterson's estimators of theta were calculated. Tajima's D was also used to determine if the ITS in these taxa evolved neutrally. Finally, neighbour similarity score and pairwise homology index tests were performed to detect recombination events. RESULTS: While there was little variation among Berwaldia parasite strains infecting different host populations, the among-population genetic variation of MIC1 was significant. Likewise, ITS genetic diversity was lower in Berwaldia than in MIC1. Recombination signals were detected only in Berwaldia. CONCLUSION: Genetic tests showed that parasite populations could have expanded recently after a bottleneck or that the ITS could be under negative selection in both microsporidia species. Recombination analyses might indicate cryptic sex in Berwaldia and pure asexuality in MIC1. The differences observed between the two microsporidian species present an exciting opportunity to study the genetic basis of microsporidia-Daphnia coevolution in natural populations, and to better understand reproduction in these parasites.


Assuntos
DNA Intergênico , Daphnia/microbiologia , Variação Genética , Microsporídios/genética , Animais , República Tcheca , Haplótipos , Metagenômica , Filogeografia , Recombinação Genética
6.
Zoology (Jena) ; 119(4): 314-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27209316

RESUMO

Studies of parasite population dynamics in natural systems are crucial for our understanding of host-parasite coevolutionary processes. Some field studies have reported that host genotype frequencies in natural populations change over time according to parasite-driven negative frequency-dependent selection. However, the temporal patterns of parasite genotypes have rarely been investigated. Moreover, parasite-driven negative frequency-dependent selection is contingent on the existence of genetic specificity between hosts and parasites. In the present study, the population dynamics and host-genotype specificity of the ichthyosporean Caullerya mesnili, a common endoparasite of Daphnia water fleas, were analysed based on the observed sequence variation in the first internal transcribed spacer (ITS1) of the ribosomal DNA. The Daphnia population of lake Greifensee (Switzerland) was sampled and subjected to parasite screening and host genotyping during C. mesnili epidemics of four consecutive years. The ITS1 of wild-caught C. mesnili-infected Daphnia was sequenced using the 454 pyrosequencing platform. The relative frequencies of C. mesnili ITS1 sequences differed significantly among years: the most abundant C. mesnili ITS1 sequence decreased and rare sequences increased over the course of the study, a pattern consistent with negative frequency-dependent selection. However, only a weak signal of host-genotype specificity between C. mesnili and Daphnia genotypes was detected. Use of cutting edge genomic techniques will allow further investigation of the underlying micro-evolutionary relationships within the Daphnia-C. mesnili system.


Assuntos
Daphnia/parasitologia , Mesomycetozoea/fisiologia , Animais , DNA Espaçador Ribossômico , Daphnia/genética , Genótipo , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Mesomycetozoea/genética , Seleção Genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA