Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931541

RESUMO

Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%.


Assuntos
Inteligência Artificial , Condução de Veículo , Redes Neurais de Computação , Radar , Máquina de Vetores de Suporte , Humanos , Algoritmos , Aprendizado de Máquina
2.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765813

RESUMO

Despite significant improvement in prognosis, myocardial infarction (MI) remains a major cause of morbidity and mortality around the globe. MI is a life-threatening cardiovascular condition that requires prompt diagnosis and appropriate treatment. The primary objective of this research is to identify instances of anterior and inferior myocardial infarction by utilizing data obtained from Ultra-wideband radar technology in a hospital for patients of anterior and inferior MI. The collected data is preprocessed to extract spectral features. A novel feature engineering approach is designed to fuse temporal features and class prediction probability features derived from the spectral feature dataset. Several well-known machine learning models are implemented and fine-tuned to obtain optimal performance in the detection of anterior and inferior MI. The results demonstrate that integration of the fused feature set with machine learning models results in a notable improvement in both the accuracy and precision of MI detection. Notably, random forest (RF) and k-nearest neighbor showed superb performance with an accuracy of 98.8%. For demonstrating the capacity of models to generalize, K-fold cross-validation is carried out, wherein RF exhibits a mean accuracy of 99.1%. Furthermore, the examination of computational complexity indicates a low computational complexity, thereby indicating computational efficiency.


Assuntos
Infarto Miocárdico de Parede Inferior , Infarto do Miocárdio , Humanos , Radar , Infarto do Miocárdio/diagnóstico por imagem , Análise por Conglomerados , Aprendizado de Máquina
3.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772250

RESUMO

With the advancement in information technology, digital data stealing and duplication have become easier. Over a trillion bytes of data are generated and shared on social media through the internet in a single day, and the authenticity of digital data is currently a major problem. Cryptography and image watermarking are domains that provide multiple security services, such as authenticity, integrity, and privacy. In this paper, a digital image watermarking technique is proposed that employs the least significant bit (LSB) and canny edge detection method. The proposed method provides better security services and it is computationally less expensive, which is the demand of today's world. The major contribution of this method is to find suitable places for watermarking embedding and provides additional watermark security by scrambling the watermark image. A digital image is divided into non-overlapping blocks, and the gradient is calculated for each block. Then convolution masks are applied to find the gradient direction and magnitude, and non-maximum suppression is applied. Finally, LSB is used to embed the watermark in the hysteresis step. Furthermore, additional security is provided by scrambling the watermark signal using our chaotic substitution box. The proposed technique is more secure because of LSB's high payload and watermark embedding feature after a canny edge detection filter. The canny edge gradient direction and magnitude find how many bits will be embedded. To test the performance of the proposed technique, several image processing, and geometrical attacks are performed. The proposed method shows high robustness to image processing and geometrical attacks.

4.
Sensors (Basel) ; 23(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631555

RESUMO

Railway track faults may lead to railway accidents and cause human and financial loss. Spatial, temporal, and weather elements, and wear and tear, lead to ballast, loose nuts, misalignment, and cracks leading to accidents. Manual inspection of such defects is time-consuming and prone to errors. Automatic inspection provides a fast, reliable, and unbiased solution. However, highly accurate fault detection is challenging due to the lack of public datasets, noisy data, inefficient models, etc. To obtain better performance, this study presents a novel approach that relies on mel frequency cepstral coefficient features from acoustic data. The primary objective of this study is to increase fault detection performance. As well as designing an ensemble model, we utilize selective features using chi-square(chi2) that have high importance with respect to the target class. Extensive experiments were carried out to analyze the efficiency of the proposed approach. The experimental results suggest that using 60 features, 40 original features, and 20 chi2 features produces optimal results both regarding accuracy and computational complexity. A mean accuracy score of 0.99 was obtained using the proposed approach with machine learning models using the collected data. Moreover, this performance was significantly better than that of existing approaches; however, the performance of models may vary in real-world settings.

5.
Sensors (Basel) ; 23(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37571624

RESUMO

Cricket has a massive global following and is ranked as the second most popular sport globally, with an estimated 2.5 billion fans. Batting requires quick decisions based on ball speed, trajectory, fielder positions, etc. Recently, computer vision and machine learning techniques have gained attention as potential tools to predict cricket strokes played by batters. This study presents a cutting-edge approach to predicting batsman strokes using computer vision and machine learning. The study analyzes eight strokes: pull, cut, cover drive, straight drive, backfoot punch, on drive, flick, and sweep. The study uses the MediaPipe library to extract features from videos and several machine learning and deep learning algorithms, including random forest (RF), support vector machine, k-nearest neighbors, decision tree, linear regression, and long short-term memory to predict the strokes. The study achieves an outstanding accuracy of 99.77% using the RF algorithm, outperforming the other algorithms used in the study. The k-fold validation of the RF model is 95.0% with a standard deviation of 0.07, highlighting the potential of computer vision and machine learning techniques for predicting batsman strokes in cricket. The study's results could help improve coaching techniques and enhance batsmen's performance in cricket, ultimately improving the game's overall quality.


Assuntos
Críquete , Humanos , Algoritmos , Aprendizado de Máquina , Máquina de Vetores de Suporte
6.
Sensors (Basel) ; 23(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960657

RESUMO

The Internet of Things (IoT) is an innovative technology that presents effective and attractive solutions to revolutionize various domains. Numerous solutions based on the IoT have been designed to automate industries, manufacturing units, and production houses to mitigate human involvement in hazardous operations. Owing to the large number of publications in the IoT paradigm, in particular those focusing on industrial IoT (IIoT), a comprehensive survey is significantly important to provide insights into recent developments. This survey presents the workings of the IoT-based smart industry and its major components and proposes the state-of-the-art network infrastructure, including structured layers of IIoT architecture, IIoT network topologies, protocols, and devices. Furthermore, the relationship between IoT-based industries and key technologies is analyzed, including big data storage, cloud computing, and data analytics. A detailed discussion of IIoT-based application domains, smartphone application solutions, and sensor- and device-based IIoT applications developed for the management of the smart industry is also presented. Consequently, IIoT-based security attacks and their relevant countermeasures are highlighted. By analyzing the essential components, their security risks, and available solutions, future research directions regarding the implementation of IIoT are outlined. Finally, a comprehensive discussion of open research challenges and issues related to the smart industry is also presented.

7.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015707

RESUMO

Several smart city ideas are introduced to manage various problems caused by overpopulation, but the futuristic smart city is a concept based on dense and artificial-intelligence-centric cities. Thus, massive device connectivity with huge data traffic is expected in the future where communication networks are expected to provide ubiquity, high quality of service, and on-demand content for a large number of interconnected devices. The sixth-generation (6G) network is considered the problem-solving network of futuristic cities, with huge bandwidth and low latency. The expected 6G of the radio access network is based on terahertz (THz) waves with the capability of carrying up to one terabit per second (Tbps). THz waves have the capability of carrying a large amount of data but these waves have several drawbacks, such as short-range and atmospheric attenuation. Hence, these problems can introduce complications and hamper the performance of the 6G network. This study envisions futuristic smart cities using 6G and proposes a conceptual terrestrial network (TN) architecture for 6G. The nested Bee Hive is a scalable multilayer architecture designed to meet the needs of futuristic smart cities. Moreover, we designed the multilayer network infrastructure while considering the expectations from a network of futuristic smart cities and the complications of THz waves. Extensive simulations are performed using different pathfinding algorithms in the 3D multilayer domain to evaluate the performance of the proposed architecture and set the dynamics of futuristic communication of 6G.


Assuntos
Algoritmos , Inteligência Artificial , Animais , Abelhas , Cidades , Previsões
8.
Sensors (Basel) ; 22(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271130

RESUMO

The periodic inspection of railroad tracks is very important to find structural and geometrical problems that lead to railway accidents. Currently, in Pakistan, rail tracks are inspected by an acoustic-based manual system that requires a railway engineer as a domain expert to differentiate between different rail tracks' faults, which is cumbersome, laborious, and error-prone. This study proposes the use of traditional acoustic-based systems with deep learning models to increase performance and reduce train accidents. Two convolutional neural networks (CNN) models, convolutional 1D and convolutional 2D, and one recurrent neural network (RNN) model, a long short-term memory (LSTM) model, are used in this regard. Initially, three types of faults are considered, including superelevation, wheel burnt, and normal tracks. Contrary to traditional acoustic-based systems where the spectrogram dataset is generated before the model training, the proposed approach uses on-the-fly feature extraction by generating spectrograms as a deep learning model's layer. Different lengths of audio samples are used to analyze their performance with each model. Each audio sample of 17 s is split into 3 variations of 1.7, 3.4, and 8.5 s, and all 3 deep learning models are trained and tested against each split time. Various combinations of audio data augmentation are analyzed extensively to investigate models' performance. The results suggest that the LSTM with 8.5 split time gives the best results with the accuracy of 99.7%, the precision of 99.5%, recall of 99.5%, and F1 score of 99.5%.


Assuntos
Aprendizado Profundo , Acústica , Redes Neurais de Computação
9.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746333

RESUMO

Deep learning is used to address a wide range of challenging issues including large data analysis, image processing, object detection, and autonomous control. In the same way, deep learning techniques are also used to develop software and techniques that pose a danger to privacy, democracy, and national security. Fake content in the form of images and videos using digital manipulation with artificial intelligence (AI) approaches has become widespread during the past few years. Deepfakes, in the form of audio, images, and videos, have become a major concern during the past few years. Complemented by artificial intelligence, deepfakes swap the face of one person with the other and generate hyper-realistic videos. Accompanying the speed of social media, deepfakes can immediately reach millions of people and can be very dangerous to make fake news, hoaxes, and fraud. Besides the well-known movie stars, politicians have been victims of deepfakes in the past, especially US presidents Barak Obama and Donald Trump, however, the public at large can be the target of deepfakes. To overcome the challenge of deepfake identification and mitigate its impact, large efforts have been carried out to devise novel methods to detect face manipulation. This study also discusses how to counter the threats from deepfake technology and alleviate its impact. The outcomes recommend that despite a serious threat to society, business, and political institutions, they can be combated through appropriate policies, regulation, individual actions, training, and education. In addition, the evolution of technology is desired for deepfake identification, content authentication, and deepfake prevention. Different studies have performed deepfake detection using machine learning and deep learning techniques such as support vector machine, random forest, multilayer perceptron, k-nearest neighbors, convolutional neural networks with and without long short-term memory, and other similar models. This study aims to highlight the recent research in deepfake images and video detection, such as deepfake creation, various detection algorithms on self-made datasets, and existing benchmark datasets.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Redes Neurais de Computação
10.
Sensors (Basel) ; 22(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36236791

RESUMO

Building energy consumption prediction has become an important research problem within the context of sustainable homes and smart cities. Data-driven approaches have been regarded as the most suitable for integration into smart houses. With the wide deployment of IoT sensors, the data generated from these sensors can be used for modeling and forecasting energy consumption patterns. Existing studies lag in prediction accuracy and various attributes of buildings are not very well studied. This study follows a data-driven approach in this regard. The novelty of the paper lies in the fact that an ensemble model is proposed, which provides higher performance regarding cooling and heating load prediction. Moreover, the influence of different features on heating and cooling load is investigated. Experiments are performed by considering different features such as glazing area, orientation, height, relative compactness, roof area, surface area, and wall area. Results indicate that relative compactness, surface area, and wall area play a significant role in selecting the appropriate cooling and heating load for a building. The proposed model achieves 0.999 R2 for heating load prediction and 0.997 R2 for cooling load prediction, which is superior to existing state-of-the-art models. The precise prediction of heating and cooling load, can help engineers design energy-efficient buildings, especially in the context of future smart homes.

11.
Sensors (Basel) ; 22(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366280

RESUMO

Asthma is a deadly disease that affects the lungs and air supply of the human body. Coronavirus and its variants also affect the airways of the lungs. Asthma patients approach hospitals mostly in a critical condition and require emergency treatment, which creates a burden on health institutions during pandemics. The similar symptoms of asthma and coronavirus create confusion for health workers during patient handling and treatment of disease. The unavailability of patient history to physicians causes complications in proper diagnostics and treatments. Many asthma patient deaths have been reported especially during pandemics, which necessitates an efficient framework for asthma patients. In this article, we have proposed a blockchain consortium healthcare framework for asthma patients. The proposed framework helps in managing asthma healthcare units, coronavirus patient records and vaccination centers, insurance companies, and government agencies, which are connected through the secure blockchain network. The proposed framework increases data security and scalability as it stores encrypted patient data on the Interplanetary File System (IPFS) and keeps data hash values on the blockchain. The patient data are traceable and accessible to physicians and stakeholders, which helps in accurate diagnostics, timely treatment, and the management of patients. The smart contract ensures the execution of all business rules. The patient profile generation mechanism is also discussed. The experiment results revealed that the proposed framework has better transaction throughput, query delay, and security than existing solutions.


Assuntos
Asma , Blockchain , Humanos , Pandemias , Segurança Computacional , Atenção à Saúde/métodos , Asma/diagnóstico , Asma/terapia
12.
Sensors (Basel) ; 21(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696066

RESUMO

The COVID-19 pandemic has affected almost every country causing devastating economic and social disruption and stretching healthcare systems to the limit. Furthermore, while being the current gold standard, existing test methods including NAAT (Nucleic Acid Amplification Tests), clinical analysis of chest CT (Computer Tomography) scan images, and blood test results, require in-person visits to a hospital which is not an adequate way to control such a highly contagious pandemic. Therefore, top priority must be given, among other things, to enlisting recent and adequate technologies to reduce the adverse impact of this pandemic. Modern smartphones possess a rich variety of embedded MEMS (Micro-Electro-Mechanical-Systems) sensors capable of recording movements, temperature, audio, and video of their carriers. This study leverages the smartphone sensors for the preliminary diagnosis of COVID-19. Deep learning, an important breakthrough in the domain of artificial intelligence in the past decade, has huge potential for extracting apt and appropriate features in healthcare. Motivated from these facts, this paper presents a new framework that leverages advanced machine learning and data analytics techniques for the early detection of coronavirus disease using smartphone embedded sensors. The proposal provides a simple to use and quickly deployable screening tool that can be easily configured with a smartphone. Experimental results indicate that the model can detect positive cases with an overall accuracy of 79% using only the data from the smartphone sensors. This means that the patient can either be isolated or treated immediately to prevent further spread, thereby saving more lives. The proposed approach does not involve any medical tests and is a cost-effective solution that provides robust results.


Assuntos
COVID-19 , Aprendizado Profundo , Inteligência Artificial , Humanos , Pandemias , SARS-CoV-2 , Smartphone
13.
Sensors (Basel) ; 21(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34300572

RESUMO

Drowsiness when in command of a vehicle leads to a decline in cognitive performance that affects driver behavior, potentially causing accidents. Drowsiness-related road accidents lead to severe trauma, economic consequences, impact on others, physical injury and/or even death. Real-time and accurate driver drowsiness detection and warnings systems are necessary schemes to reduce tiredness-related driving accident rates. The research presented here aims at the classification of drowsy and non-drowsy driver states based on respiration rate detection by non-invasive, non-touch, impulsive radio ultra-wideband (IR-UWB) radar. Chest movements of 40 subjects were acquired for 5 m using a lab-placed IR-UWB radar system, and respiration per minute was extracted from the resulting signals. A structured dataset was obtained comprising respiration per minute, age and label (drowsy/non-drowsy). Different machine learning models, namely, Support Vector Machine, Decision Tree, Logistic regression, Gradient Boosting Machine, Extra Tree Classifier and Multilayer Perceptron were trained on the dataset, amongst which the Support Vector Machine shows the best accuracy of 87%. This research provides a ground truth for verification and assessment of UWB to be used effectively for driver drowsiness detection based on respiration.


Assuntos
Condução de Veículo , Humanos , Redes Neurais de Computação , Taxa Respiratória , Máquina de Vetores de Suporte , Vigília
14.
Sensors (Basel) ; 21(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960430

RESUMO

Emotion recognition gained increasingly prominent attraction from a multitude of fields recently due to their wide use in human-computer interaction interface, therapy, and advanced robotics, etc. Human speech, gestures, facial expressions, and physiological signals can be used to recognize different emotions. Despite the discriminating properties to recognize emotions, the first three methods have been regarded as ineffective as the probability of human's voluntary and involuntary concealing the real emotions can not be ignored. Physiological signals, on the other hand, are capable of providing more objective, and reliable emotion recognition. Based on physiological signals, several methods have been introduced for emotion recognition, yet, predominantly such approaches are invasive involving the placement of on-body sensors. The efficacy and accuracy of these approaches are hindered by the sensor malfunctioning and erroneous data due to human limbs movement. This study presents a non-invasive approach where machine learning complements the impulse radio ultra-wideband (IR-UWB) signals for emotion recognition. First, the feasibility of using IR-UWB for emotion recognition is analyzed followed by determining the state of emotions into happiness, disgust, and fear. These emotions are triggered using carefully selected video clips to human subjects involving both males and females. The convincing evidence that different breathing patterns are linked with different emotions has been leveraged to discriminate between different emotions. Chest movement of thirty-five subjects is obtained using IR-UWB radar while watching the video clips in solitude. Extensive signal processing is applied to the obtained chest movement signals to estimate respiration rate per minute (RPM). The RPM estimated by the algorithm is validated by repeated measurements by a commercially available Pulse Oximeter. A dataset is maintained comprising gender, RPM, age, and associated emotions which are further used with several machine learning algorithms for automatic recognition of human emotions. Experiments reveal that IR-UWB possesses the potential to differentiate between different human emotions with a decent accuracy of 76% without placing any on-body sensors. Separate analysis for male and female participants reveals that males experience high arousal for happiness while females experience intense fear emotions. For disgust emotion, no large difference is found for male and female participants. To the best of the authors' knowledge, this study presents the first non-invasive approach using the IR-UWB radar for emotion recognition.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Emoções , Feminino , Humanos , Aprendizado de Máquina , Masculino , Respiração
15.
Sensors (Basel) ; 21(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577429

RESUMO

Regular inspection of railway track health is crucial for maintaining safe and reliable train operations. Factors, such as cracks, ballast issues, rail discontinuity, loose nuts and bolts, burnt wheels, superelevation, and misalignment developed on the rails due to non-maintenance, pre-emptive investigations and delayed detection, pose a grave danger and threats to the safe operation of rail transport. The traditional procedure of manually inspecting the rail track using a railway cart is both inefficient and prone to human error and biases. In a country like Pakistan where train accidents have taken many lives, it is not unusual to automate such approaches to avoid such accidents and save countless lives. This study aims at enhancing the traditional railway cart system to address these issues by introducing an automatic railway track fault detection system using acoustic analysis. In this regard, this study makes two important contributions: data collection on Pakistan railway tracks using acoustic signals and the application of various classification techniques to the collected data. Initially, three types of tracks are considered, including normal track, wheel burnt and superelevation, due to their common occurrence. Several well-known machine learning algorithms are applied such as support vector machines, logistic regression, random forest and decision tree classifier, in addition to deep learning models like multilayer perceptron and convolutional neural networks. Results suggest that acoustic data can help determine the track faults successfully. Results indicate that the best results are obtained by RF and DT with an accuracy of 97%.


Assuntos
Algoritmos , Redes Neurais de Computação , Acústica , Humanos , Aprendizado de Máquina , Máquina de Vetores de Suporte
16.
Curr Res Food Sci ; 8: 100773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840806

RESUMO

Food adulteration is a global concern, drawing attention from safety authorities due to its potential health risks. Detecting and categorizing oil adulteration is crucial for consumer safety and food industry integrity. This research explores hyperspectral imaging (HSI) analysis to identify substandard oil adulteration at different stages. Using the non-destructive HSI Specim Fx 10 system, a method for precise and easy imaging-based fraud detection and classification was proposed. The 670 oil samples, including pure (Almond, Mustard, Coconut, Olive) and adulterated (Sunflower, Castor, Liquid Paraffin), were analyzed. The Savitzky-Golay filter preprocessed the images to remove noise and smooth spectral signatures. The oils were identified using various machine learning approaches, including Support Vector Machines, Logistic Regression, Linear Discriminant Analysis, Random Forests, Decision Trees, K-Nearest Neighbors, and Naïve Bayes with Linear Discriminant Analysis excelling in identification. Performance parameters, including precision, recall, F1-score, and overall accuracy, were calculated. The proposed method achieved a validation accuracy of 100%, outperforming numerous state-of-the-art approaches. This study introduces a robust pipeline for effective oil adulteration detection, offering a significant advancement in food safety and quality control.

17.
Sci Rep ; 14(1): 13249, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858481

RESUMO

Malaria is an extremely malignant disease and is caused by the bites of infected female mosquitoes. This disease is not only infectious among humans, but among animals as well. Malaria causes mild symptoms like fever, headache, sweating and vomiting, and muscle discomfort; severe symptoms include coma, seizures, and kidney failure. The timely identification of malaria parasites is a challenging and chaotic endeavor for health staff. An expert technician examines the schematic blood smears of infected red blood cells through a microscope. The conventional methods for identifying malaria are not efficient. Machine learning approaches are effective for simple classification challenges but not for complex tasks. Furthermore, machine learning involves rigorous feature engineering to train the model and detect patterns in the features. On the other hand, deep learning works well with complex tasks and automatically extracts low and high-level features from the images to detect disease. In this paper, EfficientNet, a deep learning-based approach for detecting Malaria, is proposed that uses red blood cell images. Experiments are carried out and performance comparison is made with pre-trained deep learning models. In addition, k-fold cross-validation is also used to substantiate the results of the proposed approach. Experiments show that the proposed approach is 97.57% accurate in detecting Malaria from red blood cell images and can be beneficial practically for medical healthcare staff.


Assuntos
Aprendizado Profundo , Eritrócitos , Malária , Eritrócitos/parasitologia , Humanos , Malária/diagnóstico , Malária/sangue , Malária/parasitologia
18.
PeerJ Comput Sci ; 10: e1697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259896

RESUMO

Public concern regarding health systems has experienced a rapid surge during the last two years due to the COVID-19 outbreak. Accordingly, medical professionals and health-related institutions reach out to patients and seek feedback to analyze, monitor, and uplift medical services. Such views and perceptions are often shared on social media platforms like Facebook, Instagram, Twitter, etc. Twitter is the most popular and commonly used by the researcher as an online platform for instant access to real-time news, opinions, and discussion. Its trending hashtags (#) and viral content make it an ideal hub for monitoring public opinion on a variety of topics. The tweets are extracted using three hashtags #healthcare, #healthcare services, and #medical facilities. Also, location and tweet sentiment analysis are considered in this study. Several recent studies deployed Twitter datasets using ML and DL models, but the results show lower accuracy. In addition, the studies did not perform extensive comparative analysis and lack validation. This study addresses two research questions: first, what are the sentiments of people toward medical services worldwide? and second, how effective are the machine learning and deep learning approaches for the classification of sentiment on healthcare tweets? Experiments are performed using several well-known machine learning models including support vector machine, logistic regression, Gaussian naive Bayes, extra tree classifier, k nearest neighbor, random forest, decision tree, and AdaBoost. In addition, this study proposes a transfer learning-based LSTM-ETC model that effectively predicts the customer's satisfaction level from the healthcare dataset. Results indicate that despite the best performance by the ETC model with an 0.88 accuracy score, the proposed model outperforms with a 0.95 accuracy score. Predominantly, the people are happy about the provided medical services as the ratio of the positive sentiments is substantially higher than the negative sentiments. The sentiments, either positive or negative, play a crucial role in making important decisions through customer feedback and enhancing quality.

19.
PLoS One ; 19(1): e0295036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206967

RESUMO

The wheat crop that fulfills 35% of human food demand is facing several problems due to a lack of transparency, security, reliability, and traceability in the existing agriculture supply chain. Many systems have been developed for the agriculture supply chain to overcome such issues, however, monopolistic centralized control is the biggest hurdle to realizing the use of such systems. It has eventually gained consumers' trust in branded products and rejected other products due to the lack of traceable supply chain information. This study proposes a blockchain-based framework for supply chain traceability which provides trustable, transparent, secure, and reliable services for the wheat crop. A crypto token called wheat coin (WC) has been introduced to keep track of transactions among the stakeholders of the wheat supply chain. Moreover, an initial coin offering (ICO) of WC, crypto wallets, and an economic model are proposed. Furthermore, a smart contract-based transaction system has been devised for the transparency of wheat crop transactions and conversion of WC to fiat and vice versa. We have developed the interplanetary file system (IPFS) to improve data availability, security, and transparency which stores encrypted private data of farmers, businesses, and merchants. Lastly, the results of the experiments show that the proposed framework shows better performance as compared to previous crop supply chain solutions in terms of latency to add-blocks, per-minute transactions, average gas charge for the transaction, and transaction verification time. Performance analysis with Bitcoin and Ethereum shows the superior performance of the proposed system.


Assuntos
Blockchain , Cryptococcus neoformans , Criptosporidiose , Humanos , Triticum , Reprodutibilidade dos Testes , Agricultura , Comércio
20.
PeerJ Comput Sci ; 9: e1353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346628

RESUMO

With the rise of social media, the dissemination of forged content and news has been on the rise. Consequently, fake news detection has emerged as an important research problem. Several approaches have been presented to discriminate fake news from real news, however, such approaches lack robustness for multi-domain datasets, especially within the context of Urdu news. In addition, some studies use machine-translated datasets using English to Urdu Google translator and manual verification is not carried out. This limits the wide use of such approaches for real-world applications. This study investigates these issues and proposes fake news classier for Urdu news. The dataset has been collected covering nine different domains and constitutes 4097 news. Experiments are performed using the term frequency-inverse document frequency (TF-IDF) and a bag of words (BoW) with the combination of n-grams. The major contribution of this study is the use of feature stacking, where feature vectors of preprocessed text and verbs extracted from the preprocessed text are combined. Support vector machine, k-nearest neighbor, and ensemble models like random forest (RF) and extra tree (ET) were used for bagging while stacking was applied with ET and RF as base learners with logistic regression as the meta learner. To check the robustness of models, fivefold and independent set testing were employed. Experimental results indicate that stacking achieves 93.39%, 88.96%, 96.33%, 86.2%, and 93.17% scores for accuracy, specificity, sensitivity, MCC, ROC, and F1 score, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA