Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Immunol ; 204(1): 180-191, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31801816

RESUMO

Our understanding of the human immune response to malaria remains incomplete. Clinical trials using whole-sporozoite-based vaccination approaches such as the Sanaria PfSPZ Vaccine, followed by controlled human malaria infection (CHMI) to assess vaccine efficacy offer a unique opportunity to study the immune response during Plasmodium falciparum infection. Diverse populations of T cells that are not restricted to classical HLA (unconventional T cells) participate in the host response during Plasmodium infection. Although several populations of unconventional T cells exist, the majority of studies focused on TCR Vγ9Vδ2 cells, the most abundant TCR γδ cell population in peripheral blood. In this study, we dissected the response of three TCR γδ cell subsets and mucosal-associated invariant T cells in healthy volunteers immunized with PfSPZ Vaccine and challenged by CHMI using Sanaria PfSPZ Challenge. Using a flow cytometry-based unbiased analysis followed by T cell cloning, several findings were made. Whereas major ex vivo alterations were not detectable after immunization with PfSPZ Vaccine, TCR Vδ2, and mucosal-associated invariant T cells expanded after asexual blood-stage parasitemia induced by CHMI. CHMI, but not vaccination, also induced the activation of TCR Vδ1 and Vδ1-Vδ2- γδ T cells. The activated TCR Vδ1 cells were oligoclonal, suggesting clonal expansion, and upon repeated CHMI, showed diminished response, indicating long-term alterations induced by blood-stage parasitemia. Some TCR Vδ1 clones recognized target cells in the absence of parasite-derived Ags, thus suggesting recognition of self-molecules. These findings reveal the articulate participation of different populations of unconventional T cells to P. falciparum infection.


Assuntos
Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Células Cultivadas , Voluntários Saudáveis , Humanos , Masculino , Análise de Célula Única , Tanzânia , Adulto Jovem
2.
Semin Immunopathol ; 42(3): 265-277, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32076813

RESUMO

Malaria is an old scourge of humankind and has a large negative impact on the economic development of affected communities. Recent success in malaria control and reduction of mortality seems to have stalled emphasizing that our current intervention tools need to be complemented by malaria vaccines. Different populations of unconventional T cells such as mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cells are gaining attention in the field of malaria immunology. Significant advances in our basic understanding of unconventional T cell biology in rodent malaria models have been made, however, their roles in humans during malaria are less clear. Unconventional T cells are abundant in skin, gut and liver tissues, and long-lasting expansions and functional alterations were observed upon malaria infection in malaria naïve and malaria pre-exposed volunteers. Here, we review the current understanding of involvement of unconventional T cells in anti-Plasmodium falciparum immunity and highlight potential future research avenues.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Células T Invariantes Associadas à Mucosa , Humanos , Plasmodium falciparum
3.
Sci Transl Med ; 12(529)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024802

RESUMO

Children from low- and middle-income countries, where there is a high incidence of infectious disease, have the greatest need for the protection afforded by vaccination, but vaccines often show reduced efficacy in these populations. An improved understanding of how age, infection, nutrition, and genetics influence immune ontogeny and function is key to informing vaccine design for this at-risk population. We sought to identify factors that shape immune development in children under 5 years of age from Tanzania and Mozambique by detailed immunophenotyping of longitudinal blood samples collected during the RTS,S malaria vaccine phase 3 trial. In these cohorts, the composition of the immune system is dynamically transformed during the first years of life, and this was further influenced by geographical location, with some immune cell types showing an altered rate of development in Tanzanian children compared to Dutch children enrolled in the Generation R population-based cohort study. High-titer antibody responses to the RTS,S/AS01E vaccine were associated with an activated immune profile at the time of vaccination, including an increased frequency of antibody-secreting plasmablasts and follicular helper T cells. Anemic children had lower frequencies of recent thymic emigrant T cells, isotype-switched memory B cells, and plasmablasts; modulating iron bioavailability in vitro could recapitulate the B cell defects observed in anemic children. Our findings demonstrate that the composition of the immune system in children varies according to age, geographical location, and anemia status.


Assuntos
Anemia , Vacinas Antimaláricas , Malária Falciparum , Anemia/epidemiologia , Anticorpos Antiprotozoários , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Lactente , Plasmodium falciparum
4.
Mucosal Immunol ; 11(4): 1060-1070, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29743612

RESUMO

Mucosal-associated invariant T (MAIT) cells are abundant innate-like T lymphocytes in mucosal tissues and recognize a variety of riboflavin-related metabolites produced by the microbial flora. Relevant issues are whether MAIT cells are heterogeneous in the colon, and whether the local environment influences microbial metabolism thereby shaping MAIT cell phenotypes and responses. We found discrete MAIT cell populations in human colon, characterized by the diverse expression of transcription factors, cytokines and surface markers, indicative of activated and precisely controlled lymphocyte populations. Similar phenotypes were rare among circulating MAIT cells and appeared when circulating MAIT cells were stimulated with the synthetic antigens 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil, and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil. Furthermore, bacteria grown in colon-resembling conditions with low oxygen tension and harvested at stationary growth phase, potently activated human MAIT cells. The increased activation correlated with accumulation of the above antigenic metabolites as indicated by mass spectrometry. Thus, the colon environment contributes to mucosal immunity by directly affecting bacterial metabolism, and indirectly controlling the stimulation and differentiation of MAIT cells.


Assuntos
Colo/patologia , Microbioma Gastrointestinal/fisiologia , Células T Invariantes Associadas à Mucosa/imunologia , Antígenos de Bactérias/imunologia , Diferenciação Celular , Células Cultivadas , Microambiente Celular , Humanos , Imunidade Inata , Imunização , Riboflavina/imunologia , Uracila/análogos & derivados , Uracila/imunologia
5.
Am J Trop Med Hyg ; 99(2): 338-349, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29943719

RESUMO

We are using controlled human malaria infection (CHMI) by direct venous inoculation (DVI) of cryopreserved, infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) to try to reduce time and costs of developing PfSPZ Vaccine to prevent malaria in Africa. Immunization with five doses at 0, 4, 8, 12, and 20 weeks of 2.7 × 105 PfSPZ of PfSPZ Vaccine gave 65% vaccine efficacy (VE) at 24 weeks against mosquito bite CHMI in U.S. adults and 52% (time to event) or 29% (proportional) VE over 24 weeks against naturally transmitted Pf in Malian adults. We assessed the identical regimen in Tanzanians for VE against PfSPZ Challenge. Twenty- to thirty-year-old men were randomized to receive five doses normal saline or PfSPZ Vaccine in a double-blind trial. Vaccine efficacy was assessed 3 and 24 weeks later. Adverse events were similar in vaccinees and controls. Antibody responses to Pf circumsporozoite protein were significantly lower than in malaria-naïve Americans, but significantly higher than in Malians. All 18 controls developed Pf parasitemia after CHMI. Four of 20 (20%) vaccinees remained uninfected after 3 week CHMI (P = 0.015 by time to event, P = 0.543 by proportional analysis) and all four (100%) were uninfected after repeat 24 week CHMI (P = 0.005 by proportional, P = 0.004 by time to event analysis). Plasmodium falciparum SPZ Vaccine was safe, well tolerated, and induced durable VE in four subjects. Controlled human malaria infection by DVI of PfSPZ Challenge appeared more stringent over 24 weeks than mosquito bite CHMI in United States or natural exposure in Malian adults, thereby providing a rigorous test of VE in Africa.


Assuntos
Imunogenicidade da Vacina , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Administração Intravenosa , Adulto , Método Duplo-Cego , Experimentação Humana , Humanos , Imunização/efeitos adversos , Vacinas Antimaláricas/efeitos adversos , Masculino , Tanzânia , Adulto Jovem
6.
Front Immunol ; 8: 1008, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878775

RESUMO

Comprehensive assessment of cellular responses to the RTS,S/AS01E vaccine is needed to understand potential correlates and ultimately mechanisms of protection against malaria disease. Cellular responses recognizing the RTS,S/AS01E-containing circumsporozoite protein (CSP) and Hepatitis B surface antigen (HBsAg) were assessed before and 1 month after primary vaccination by intracellular cytokine staining and 16-color flow cytometry in 105 RTS,S/AS01-vaccinated and 74 rabies-vaccinated participants (controls) in a pediatric phase III trial in Africa. RTS,S/AS01E-vaccinated children had significantly higher frequencies of CSP- and HBsAg-specific CD4+ T cells producing IL-2, TNF-α, and CD40L and HBsAg-specific CD4+ T producing IFN-γ and IL-17 than baseline and the control group. Vaccine-induced responses were identified in both central and effector memory (EM) compartments. EM CD4+ T cells expressing IL-4 and IL-21 were detected recognizing both vaccine antigens. Consistently higher response rates to both antigens in RTS,S/AS01E-vaccinated than comparator-vaccinated children were observed. RTS,S/AS01E induced polyfunctional CSP- and HBsAg-specific CD4+ T cells, with a greater degree of polyfunctionality in HBsAg responses. In conclusion, RTS,S/AS01E vaccine induces T cells of higher functional heterogeneity and polyfunctionality than previously characterized. Responses detected in memory CD4+ T cell compartments may provide correlates of RTS,S/AS01-induced immunity and duration of protection in future correlates of immunity studies.

7.
Genetics ; 192(4): 1543-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23051640

RESUMO

Animal microRNAs (miRNA) are implicated in the control of nearly all cellular functions. Due to high sequence redundancy within the miRNA gene pool, loss of most of these 21- to 24-bp long RNAs individually does not cause a phenotype. Thus, only very few miRNAs have been associated with clear functional roles. We constructed a transgenic UAS-miRNA library in Drosophila melanogaster that contains 180 fly miRNAs. This library circumvents the redundancy issues by facilitating the controlled misexpression of individual miRNAs and is a useful tool to complement loss-of-function approaches. Demonstrating the effectiveness of our library, 78 miRNAs induced clear phenotypes. Most of these miRNAs were previously unstudied. Furthermore, we present a simple system to create GFP sensors to monitor miRNA expression and test direct functional interactions in vivo. Finally, we focus on the miR-92 family and identify a direct target gene that is responsible for the specific wing phenotype induced by the misexpression of miR-92 family members.


Assuntos
Drosophila melanogaster/genética , Biblioteca Gênica , MicroRNAs , Animais , Animais Geneticamente Modificados , Clonagem Molecular , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/genética , Fenótipo , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA