Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447074

RESUMO

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Imunossupressores/uso terapêutico , Imunoterapia , Recidiva Local de Neoplasia , Linfócitos T/patologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
2.
Nat Immunol ; 15(1): 54-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270517

RESUMO

miR-126 is a microRNA expressed predominately by endothelial cells and controls angiogenesis. We found miR-126 was required for the innate response to pathogen-associated nucleic acids and that miR-126-deficient mice had greater susceptibility to infection with pseudotyped HIV. Profiling of miRNA indicated that miR-126 had high and specific expression by plasmacytoid dendritic cells (pDCs). Moreover, miR-126 controlled the survival and function of pDCs and regulated the expression of genes encoding molecules involved in the innate response, including Tlr7, Tlr9 and Nfkb1, as well as Kdr, which encodes the growth factor receptor VEGFR2. Deletion of Kdr in DCs resulted in reduced production of type I interferon, which supports the proposal of a role for VEGFR2 in miR-126 regulation of pDCs. Our studies identify the miR-126-VEGFR2 axis as an important regulator of the innate response that operates through multiscale control of pDCs.


Assuntos
Células Dendríticas/imunologia , Imunidade Inata/imunologia , MicroRNAs/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Animais , Células Dendríticas/metabolismo , Citometria de Fluxo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunidade Inata/genética , Immunoblotting , Interferon-alfa/sangue , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/imunologia , Subunidade p50 de NF-kappa B/metabolismo , Ácidos Nucleicos/imunologia , Ácidos Nucleicos/metabolismo , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Transcriptoma/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34608934

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs). Specifically, we observed a reduction in the extension of the ectodermal compartment that is associated with enhanced activin signaling. Surprisingly, rather than a cell-autonomous effect, tracking the dynamics of TGFß signaling demonstrated that HTT-CAG expansion perturbs the spatial restriction of activin response. This is due to defects in the apicobasal polarization in the context of the polarized epithelium of the 2D gastruloid, leading to ectopic subcellular localization of TGFß receptors. This work refines the earliest developmental window for the prodromal phase of HD to the first 2 weeks of human development, as modeled by our 2D gastruloids.


Assuntos
Linhagem da Célula , Polaridade Celular , Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteína Huntingtina/metabolismo , Ativinas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Proteína Huntingtina/genética , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Expansão das Repetições de Trinucleotídeos
4.
Development ; 145(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378824

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disease caused by expansion of CAG repeats in the Huntingtin gene (HTT). Neither its pathogenic mechanisms nor the normal functions of HTT are well understood. To model HD in humans, we engineered a genetic allelic series of isogenic human embryonic stem cell (hESC) lines with graded increases in CAG repeat length. Neural differentiation of these lines unveiled a novel developmental HD phenotype: the appearance of giant multinucleated telencephalic neurons at an abundance directly proportional to CAG repeat length, generated by a chromosomal instability and failed cytokinesis over multiple rounds of DNA replication. We conclude that disrupted neurogenesis during development is an important, unrecognized aspect of HD pathogenesis. To address the function of normal HTT protein we generated HTT+/- and HTT-/- lines. Surprisingly, the same phenotype emerged in HTT-/- but not HTT+/- lines. We conclude that HD is a developmental disorder characterized by chromosomal instability that impairs neurogenesis, and that HD represents a genetic dominant-negative loss of function, contrary to the prevalent gain-of-toxic-function hypothesis. The consequences of developmental alterations should be considered as a new target for HD therapies.


Assuntos
Instabilidade Cromossômica , Proteína Huntingtina/genética , Doença de Huntington/genética , Neurogênese/genética , Alelos , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Humanos , Proteína Huntingtina/deficiência , Proteína Huntingtina/metabolismo , Doença de Huntington/etiologia , Doença de Huntington/patologia , Modelos Biológicos , Fenótipo , Fuso Acromático/patologia , Expansão das Repetições de Trinucleotídeos
5.
Development ; 144(17): 3042-3053, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760810

RESUMO

Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Clonais , Ensaio de Unidades Formadoras de Colônias , Ectoderma/citologia , Ectoderma/efeitos dos fármacos , Ectoderma/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Modelos Biológicos , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos
6.
Nat Methods ; 9(8): 840-6, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22751203

RESUMO

We introduce two large-scale resources for functional analysis of microRNA (miRNA): a decoy library for inhibiting miRNA function and a sensor library for monitoring microRNA activity. To take advantage of the sensor library, we developed a high-throughput assay called Sensor-seq to simultaneously quantify the activity of hundreds of miRNAs. Using this approach, we show that only the most abundant miRNAs in a cell mediate target suppression. Over 60% of detected miRNAs had no discernible activity, which indicated that the functional 'miRNome' of a cell is considerably smaller than currently inferred from profiling studies. Moreover, some highly expressed miRNAs exhibited relatively weak activity, which in some cases correlated with a high target-to-miRNA ratio or increased nuclear localization of the miRNA. Finally, we show that the miRNA decoy library can be used for pooled loss-of-function studies. These tools are valuable resources for studying miRNA biology and for miRNA-based therapeutics.


Assuntos
Técnicas Biossensoriais , Biblioteca Gênica , Vetores Genéticos/genética , Ensaios de Triagem em Larga Escala , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , MicroRNAs/antagonistas & inibidores
7.
Mol Ther Nucleic Acids ; 35(4): 102318, 2024 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-39329149

RESUMO

To fully utilize the potential of CRISPR-Cas9-mediated genome editing, time-restricted and targeted delivery is crucial. By modulating the pseudotype of engineered lentivirus-derived nanoparticles (LVNPs), we demonstrate efficient cell-targeted delivery of Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes, supporting gene modification in a defined subset of cells in mixed cell populations. LVNPs pseudotyped with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein resulted in angiotensin-converting enzyme 2 (ACE2)-dependent insertion or deletion (indel) formation in an ACE2+/ACE2- population of cells, whereas Nipah virus glycoprotein pseudotyping resulted in Ephrin-B2/B3-specific gene knockout. Additionally, LVNPs pseudotyped with Edmonston strain measles virus glycoproteins (MV-H/F) delivered Cas9/sgRNA RNPs to CD46+ cells with and without additional expression of SLAM (signaling lymphocytic activation molecule; CD150). However, an engineered SLAM-specific measles virus pseudotype (measles virus-hemagglutinin/fusion [MV-H/F]-SLAM) efficiently targeted LVNPs to SLAM+ cells. Lentiviral vectors (LVs) pseudotyped with MV-H/F-SLAM efficiently transduced >80% of interleukin (IL)-4/IL-21-stimulated primary B cells cultured on CD40 ligand (CD40L)-expressing feeder cells. Notably, LVNPs pseudotyped with MV-H/F and MV-H/F-SLAM reached indel rates of >80% and >60% in stimulated primary B cells, respectively. Collectively, our findings demonstrate the modularity of LVNP-directed delivery of ready-to-function Cas9/sgRNA complexes. Using a panel of different pseudotypes, we provide evidence that LVNPs can be engineered to induce effective indel formation in a subpopulation of cells defined by the expression of surface receptors.

8.
Mol Ther ; 20(12): 2257-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22871668

RESUMO

Lentiviral vector (LV)-mediated gene transfer is a promising method of gene therapy. We previously reported that systemic injection of HIV-based LV triggers a transient inflammatory response. Here, we carried out studies to better characterize this response, and to develop a strategy to overcome the adverse effects of interferon (IFN) on LV-mediated gene transfer. We profiled gene expression in the liver after LV administration using deep-sequencing (RNA-seq), and identified several innate response pathways. We examined the response to LV in MyD88-TRIF knockout mice, which are incapable of toll-like receptor (TLR) signaling. Unexpectedly, the IFN response to LV was not reduced in the liver indicating that a non-TLR pathway can recognize LV in this organ. Indeed, blocking reverse transcription with azidothymidine (AZT) reduced the IFN response only in the liver, suggesting that proviral DNA can be a trigger. To block the inflammatory response, we pretreated mice with a short course of dexamethasone (Dex). At 4 hours post-treatment, all the IFN-induced genes were normalized. By blocking the inflammatory response, hepatocyte transduction was dramatically increased, which in turn doubled the level of human factor IX (FIX) produced by a hepatocyte-specific LV. Our studies uncover new insights into LV-induced immune responses in the liver, and provide a means to increase the safety and efficiency of LV-mediated gene transfer.


Assuntos
Hepatócitos/metabolismo , Lentivirus/imunologia , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Citometria de Fluxo , Imunidade Inata/genética , Imunidade Inata/fisiologia , Imuno-Histoquímica , Lentivirus/genética , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/genética
9.
Mol Ther ; 20(2): 254-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22008915

RESUMO

Mucopolysaccharidosis type IIIA (MPSIIIA) is an inherited lysosomal storage disease caused by deficiency of sulfamidase, resulting in accumulation of the glycosaminoglycan (GAG) heparan sulfate. It is characterized by severe progressive neurodegeneration, together with somatic alterations, which lead to death during adolescence. Here, we tested the ability of adeno-associated virus (AAV) vector-mediated genetic modification of either skeletal muscle or liver to revert the already established disease phenotype of 2-month-old MPSIIIA males and females. Intramuscular administration of AAV-Sulfamidase failed to achieve significant therapeutic benefit in either gender. In contrast, AAV8-mediated liver-directed gene transfer achieved high and sustained levels of circulating active sulfamidase, which reached normal levels in females and was fourfold higher in males, and completely corrected lysosomal GAG accumulation in most somatic tissues. Remarkably, a 50% reduction of GAG accumulation was achieved throughout the entire brain of males, which correlated with a partial improvement of the pathology of cerebellum and cortex. Liver-directed gene transfer expanded the lifespan of MPSIIIA males, underscoring the importance of reaching supraphysiological plasma levels of enzyme for maximal therapeutic benefit. These results show how liver-directed gene transfer can reverse somatic and ameliorate neurological pathology in MPSIIIA.


Assuntos
Sistema Nervoso Central/patologia , Terapia Genética , Hidrolases/genética , Fígado/metabolismo , Mucopolissacaridose III/terapia , Animais , Cerebelo/ultraestrutura , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Ordem dos Genes , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/farmacocinética , Hidrolases/metabolismo , Injeções Intramusculares , Injeções Intravenosas , Fígado/ultraestrutura , Lisossomos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose III/genética , Mucopolissacaridose III/mortalidade , Músculo Esquelético/metabolismo , Análise de Sobrevida , Transdução Genética , Córtex Visual/patologia , Córtex Visual/ultraestrutura
10.
PLoS Genet ; 5(8): e1000615, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19696889

RESUMO

Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm(-/-)). Here, we show that Pfkm(-/-) mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm(-/-) mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm(-/-) mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm(-/-) mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies.


Assuntos
Cardiomegalia/etiologia , Doença de Depósito de Glicogênio Tipo VII/enzimologia , Doenças Hematológicas/etiologia , Músculo Esquelético/metabolismo , Fosfofrutoquinase-1/deficiência , Animais , Cardiomegalia/enzimologia , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo , Feminino , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo VII/complicações , Doença de Depósito de Glicogênio Tipo VII/metabolismo , Doenças Hematológicas/enzimologia , Doenças Hematológicas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfofrutoquinase-1/genética
11.
Nat Cell Biol ; 21(7): 900-910, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263269

RESUMO

Breaking the anterior-posterior symmetry in mammals occurs at gastrulation. Much of the signalling network underlying this process has been elucidated in the mouse; however, there is no direct molecular evidence of events driving axis formation in humans. Here, we use human embryonic stem cells to generate an in vitro three-dimensional model of a human epiblast whose size, cell polarity and gene expression are similar to a day 10 human epiblast. A defined dose of BMP4 spontaneously breaks axial symmetry, and induces markers of the primitive streak and epithelial-to-mesenchymal transition. We show that WNT signalling and its inhibitor DKK1 play key roles in this process downstream of BMP4. Our work demonstrates that a model human epiblast can break axial symmetry despite the absence of asymmetry in the initial signal and of extra-embryonic tissues or maternal cues. Our three-dimensional model is an assay for the molecular events underlying human axial symmetry breaking.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camadas Germinativas/metabolismo , Linha Primitiva/metabolismo , Técnicas de Cultura de Tecidos , Polaridade Celular/fisiologia , Transição Epitelial-Mesenquimal , Gastrulação/fisiologia , Humanos , Linha Primitiva/embriologia , Transdução de Sinais/fisiologia
12.
Cell Stem Cell ; 23(1): 60-73.e6, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29937203

RESUMO

Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Modelos Biológicos , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo
13.
Elife ; 72018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30311909

RESUMO

Self-organization of discrete fates in human gastruloids is mediated by a hierarchy of signaling pathways. How these pathways are integrated in time, and whether cells maintain a memory of their signaling history remains obscure. Here, we dissect the temporal integration of two key pathways, WNT and ACTIVIN, which along with BMP control gastrulation. CRISPR/Cas9-engineered live reporters of SMAD1, 2 and 4 demonstrate that in contrast to the stable signaling by SMAD1, signaling and transcriptional response by SMAD2 is transient, and while necessary for pluripotency, it is insufficient for differentiation. Pre-exposure to WNT, however, endows cells with the competence to respond to graded levels of ACTIVIN, which induces differentiation without changing SMAD2 dynamics. This cellular memory of WNT signaling is necessary for ACTIVIN morphogen activity. A re-evaluation of the evidence gathered over decades in model systems, re-enforces our conclusions and points to an evolutionarily conserved mechanism.


Assuntos
Ativinas/metabolismo , Gastrulação , Via de Sinalização Wnt , Animais , Sequência de Bases , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Endoderma/citologia , Genes Reporter , Humanos , Mesoderma/citologia , Camundongos , Motivos de Nucleotídeos/genética , Células-Tronco Pluripotentes/metabolismo , Ratos , Proteínas Smad/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
14.
Cell Stem Cell ; 21(5): 564-565, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100008

RESUMO

Our understanding of early human development is typically based on inference from animal models, which may not fully recapitulate human embryonic features. As proof of concept, Fogarty et al. (2017) used CRISPR/Cas9 to genetically ablate the OCT4 gene in human preimplantation embryos and found key differences from its function in model systems.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Blastocisto , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Embrião de Mamíferos , Humanos
15.
J Mol Biol ; 429(18): 2802-2815, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684247

RESUMO

The cell cycle has gained attention as a key determinant for cell fate decisions, but the contribution of DNA replication and mitosis in stem cell differentiation has not been extensively studied. To understand if these processes act as "windows of opportunity" for changes in cell identity, we established synchronized cultures of mouse embryonic stem cells as they exit the ground state of pluripotency. We show that initial transcriptional changes in this transition do not require passage through mitosis and that conversion to primed pluripotency is linked to lineage priming in the G1 phase. Importantly, we demonstrate that impairment of DNA replication severely blocks transcriptional switch to primed pluripotency, even in the absence of p53 activity induced by the DNA damage response. Our data suggest an important role for DNA replication during mouse embryonic stem cell differentiation, which could shed light on why pluripotent cells are only receptive to differentiation signals during G1, that is, before the S phase.


Assuntos
Diferenciação Celular , Divisão Celular , Replicação do DNA , Células-Tronco Embrionárias Murinas/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Camundongos , Transcrição Gênica
16.
Antiviral Res ; 142: 123-135, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28359840

RESUMO

SAMHD1 is a triphosphohydrolase that restricts HIV-1 by limiting the intracellular dNTP pool required for reverse transcription. Although SAMHD1 is expressed and active/unphosphorylated in most cell lines, its restriction activity is thought to be relevant only in non-cycling cells. However, an in depth evaluation of SAMHD1 function and relevance in cycling cells is required. Here, we show that SAMHD1-induced degradation by HIV-2 Vpx affects the dNTP pool and HIV-1 replication capacity in the presence of the 3'-azido-3'-deoxythymidine (AZT) in cycling cells. Similarly, in SAMHD1 knockout cells, HIV-1 showed increased replicative capacity in the presence of nucleoside inhibitors, especially AZT, that was reverted by re-expression of wild type SAMHD1. Sensitivity to non-nucleoside inhibitors (nevirapine and efavirenz) or the integrase inhibitor raltegravir was not affected by SAMHD1. Combination of three mutations (S18A, T21A, T25A) significantly prevented SAMHD1 phosphorylation but did not significantly affect HIV-1 replication in the presence of AZT. Our results demonstrate that SAMHD1 is active in HIV-1 permissive cells, does not modify susceptibility to HIV-1 infection but strongly affects sensitivity to nucleoside inhibitors.


Assuntos
HIV-1/efeitos dos fármacos , Proteína 1 com Domínio SAM e Domínio HD/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Replicação do DNA/efeitos dos fármacos , Edição de Genes , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Infecções por HIV/metabolismo , HIV-1/patogenicidade , HIV-2/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Transcrição Reversa/efeitos dos fármacos , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteínas Virais Reguladoras e Acessórias/efeitos dos fármacos , Zidovudina/farmacologia
17.
Dev Cell ; 39(3): 302-315, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27746044

RESUMO

The earliest aspects of human embryogenesis remain mysterious. To model patterning events in the human embryo, we used colonies of human embryonic stem cells (hESCs) grown on micropatterned substrate and differentiated with BMP4. These gastruloids recapitulate the embryonic arrangement of the mammalian germ layers and provide an assay to assess the structural and signaling mechanisms patterning the human gastrula. Structurally, high-density hESCs localize their receptors to transforming growth factor ß at their lateral side in the center of the colony while maintaining apical localization of receptors at the edge. This relocalization insulates cells at the center from apically applied ligands while maintaining response to basally presented ones. In addition, BMP4 directly induces the expression of its own inhibitor, NOGGIN, generating a reaction-diffusion mechanism that underlies patterning. We develop a quantitative model that integrates edge sensing and inhibitors to predict human fate positioning in gastruloids and, potentially, the human embryo.


Assuntos
Gástrula/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Proteína Morfogenética Óssea 4/farmacologia , Proteínas de Transporte/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo
18.
Nat Protoc ; 11(11): 2223-2232, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27735934

RESUMO

Fate allocation in the gastrulating embryo is spatially organized as cells differentiate into specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. Although embryoid bodies and organoids can exhibit some spatial organization of differentiated cells, methods that generate embryoid bodies or organoids do not yield consistent and fully reproducible results. Here, we describe a micropatterning approach in which human embryonic stem cells are confined to disk-shaped, submillimeter colonies. After 42 h of BMP4 stimulation, cells form self-organized differentiation patterns in concentric radial domains, which express specific markers associated with the embryonic germ layers, reminiscent of gastrulating embryos. Our protocol takes 3 d; it uses commercial microfabricated slides (from CYTOO), human laminin-521 (LN-521) as extracellular matrix coating, and either conditioned or chemically defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Microtecnologia/métodos , Diferenciação Celular , Linhagem Celular , Gastrulação , Humanos
19.
PLoS One ; 10(5): e0127687, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010866

RESUMO

Huntington's disease (HD) is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT). HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC) lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease.


Assuntos
Éxons , Doença de Huntington , Proteínas do Tecido Nervoso , Animais , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie
20.
Nat Biotechnol ; 33(12): 1287-1292, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524661

RESUMO

There are numerous cell types with scarcely understood functions, whose interactions with the immune system are not well characterized. To facilitate their study, we generated a mouse bearing enhanced green fluorescent protein (EGFP)-specific CD8+ T cells. Transfer of the T cells into EGFP reporter animals can be used to kill EGFP-expressing cells, allowing selective depletion of desired cell types, or to interrogate T-cell interactions with specific populations. Using this system, we eliminate a rare EGFP-expressing cell type in the heart and demonstrate its role in cardiac function. We also show that naive T cells are recruited into the mouse brain by antigen-expressing microglia, providing evidence of an immune surveillance pathway in the central nervous system. The just EGFP death-inducing (Jedi) T cells enable visualization of a T-cell antigen. They also make it possible to utilize hundreds of existing EGFP-expressing mice, tumors, pathogens and other tools, to study T-cell interactions with many different cell types, to model disease states and to determine the functions of poorly characterized cell populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA