Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163848

RESUMO

Robust and easy-to-use NMR sensor technology is proposed for accurate, on-site determination of fat and protein contents in milk. The two parameters are determined using fast consecutive 1H and 35Cl low-field NMR experiments on milk samples upon the 1:1 addition of a low-cost contrast solution. Reliable and accurate measurements are obtained without tedious calibrations and the need for extensive database information and may readily be conducted by non-experts in production site environments. This enables on-site application at farms or dairies, or use in laboratories harvesting significant reductions in costs and time per analysis as compared to wet-chemistry analysis. The performance is demonstrated for calibration samples, various supermarket milk products, and raw milk samples, of which some were analyzed directly in the milking room. To illustrate the wide application range, the supermarket milk products included both conventionally/organically produced, lactose-free milk, cow's, sheep's and goat's milk, homogenized and unhomogenized milk, and a broad nutrient range (0.1-9% fat, 1-6% protein). Excellent agreement between NMR measurements and reference values, without corrections or changes in calibration for various products and during extensive periods of experiment conduction (4 months) demonstrates the robustness of the procedure and instrumentation. For the raw milk samples, correlations between NMR and IR, NMR and wet-chemistry, as well as IR and wet-chemistry results, show that NMR, in terms of accuracy, compares favorably with the other methods.


Assuntos
Gorduras/análise , Espectroscopia de Ressonância Magnética/métodos , Proteínas do Leite/análise , Leite/química , Animais , Bovinos , Feminino , Cabras , Ovinos
2.
Environ Sci Technol ; 54(12): 7639-7650, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32407626

RESUMO

Gaseous emissions from livestock production are complex mixtures including ammonia, methane, volatile organic compounds (VOC), and H2S. These contribute to eutrophication, reduced air quality, global warming, and odor nuisance. It is imperative that these gases are mitigated in an environmentally sustainable manner. We present the discovery of a microbial inhibitor combo consisting of tannic acid and sodium fluoride (TA-NaF), which exhibits clear synergistic inhibition of ammonia production in pure bacteria culture and in pig manure while simultaneously inhibiting methane and odorant (H2S and VOC) emissions. In laboratory headspace experiments on pig manure, we used proton-transfer-reaction mass spectrometry and cavity ring-down spectroscopy to measure the effect of TA-NaF on gaseous emissions. Ammonia emission was reduced by more than 95%, methane by up to ∼99%, and odor activity value by more than 50%. Microbial community analysis and gas emission data suggest that TA-NaF acts as an efficient generic microbial inhibitor, and we hypothesize that the synergistic inhibitory effect on ammonia production is related to tannic acid causing cell membrane leakage allowing fluoride ions easy access to urease.


Assuntos
Amônia , Metano , Amônia/análise , Animais , Fluoretos , Gado , Esterco , Odorantes , Suínos , Taninos
3.
Chemphyschem ; 19(22): 2985-2988, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30246398

RESUMO

Solid-state NMR may provide access to a wealth of information on molecular structure and dynamics. However, for many applications, the acquisition is challenged by broad resonances implying large spectral linewidths and low sensitivity. Conventionally, this is tackled by using costly and laboratory-fixed spectrometers based on large high-field superconducting magnets. In this Communication, we demonstrate that a range of challenging wide-line solid-state NMR spectra can be acquired on a robust, maintenance-free, low-cost benchtop/mobile NMR spectrometer with a sensitivity comparable to common high-field instruments. The performance and versatility for recording sensitive wide-line spectra is demonstrated through acquisition of 31 P NMR of paramagnetic FePO4 and full quadupolar lineshapes of Al2 O3 (27 Al) and KNO3 (14 N). Also, we introduce interleaved acquisition of frequency-stepped slices providing a dramatic reduction of the required experiment time.

4.
Magn Reson Chem ; 54(6): 510-2, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25641664

RESUMO

We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Fenômenos Eletromagnéticos , Espectroscopia de Ressonância Magnética/instrumentação , Imãs , Acetona/análise , Campos Eletromagnéticos , Desenho de Equipamento , Etanol/análise , Análise de Alimentos , Neodímio , Isótopos de Oxigênio , Água/análise , Purificação da Água
5.
Anal Chem ; 87(13): 6446-50, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26020811

RESUMO

Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Animais
6.
Anal Chem ; 86(15): 7205-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24988044

RESUMO

A mobile, low-field nuclear magnetic resonance (NMR) sensor for onboard, inline detection of catalytic fines in fuel oil in the shipping industry is presented as an alternative to onshore laboratory measurements. Catalytic fines (called cat fines) are aluminosilicate zeolite catalysts utilized in the oil cracking process at refineries. When present in fuel oil, cat fines cause abrasive wear of engine parts and may ultimately lead to engine breakdown with large economical consequences, thereby motivating methods for inline measurements. Here, we report on a robust, mobile, and low-cost (27)Al NMR sensor for continuous online measurement of the level of catalytic fines in fuel oil onboard ships. The sensor enables accurate measurements of aluminum (catalytic fines) in ppm concentrations in good agreement with commercial laboratory reference measurements.


Assuntos
Óleos Combustíveis/análise , Espectroscopia de Ressonância Magnética/instrumentação , Catálise
7.
ACS Omega ; 6(27): 17335-17341, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278119

RESUMO

The optimal processing of animal slurry with a minimal environmental impact either as an organic fertilizer or as an energy source for biogas production fundamentally requires accurate, fast, cost-effective, and mobile analytical techniques for the measurement of nitrogen and phosphorus in large volumes of liquid animal slurry. Based on more than 300 different slurries from different species and origins, we provide here an extensive analysis of low-field NMR and standard laboratory measurements for animal slurry analysis. It is found that low-field NMR provides higher precision than wet chemistry laboratory measurements for ammonium nitrogen and total nitrogen, while it provides slightly lower precision for total phosphorus measurements. Low-field NMR may, through a square-root dependency between time and precision, be adapted for analysis at farms, in slurry tankers/transporters, in biogas digesters, or in laboratories.

8.
J Magn Reson ; 238: 20-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24291330

RESUMO

Mobile and cost-effective NMR spectroscopy exploiting low-field permanent magnets is a field of tremendous development with obvious applications for arrayed large scale analysis, field work, and industrial screening. So far such demonstrations have concentrated on relaxation measurements and lately high-resolution liquid-state NMR applications. With high-resolution solid-state NMR spectroscopy being increasingly important in a broad variety of applications, we here introduce low-field magic-angle spinning (MAS) solid-state multinuclear NMR based on a commercial ACT 0.45 T 62 mm bore Halbach magnet along with a homebuilt FPGA digital NMR console, amplifiers, and a modified standard 45 mm wide MAS probe for 7 mm rotors. To illustrate the performance of the instrument and address cases where the low magnetic field may offer complementarity to high-field NMR experiments, we demonstrate applications for (23)Na MAS NMR with enhanced second-order quadrupolar coupling effects and (31)P MAS NMR where reduced influence from chemical shift anisotropy at low field may facilitate determination of heteronuclear dipole-dipole couplings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA