Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(34): 18888-18903, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584157

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C-H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in NcAA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all NcAA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the H2O2 splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.


Assuntos
Cobre , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Cobre/química , Peróxido de Hidrogênio/metabolismo , Polissacarídeos/metabolismo , Glutamatos
2.
J Biol Inorg Chem ; 28(7): 689-698, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37725277

RESUMO

Superoxide dismutases (SODs) are enzymes that catalyze the dismutation of the superoxide radical anion into O2 and H2O2 in a two-step reaction. They are ubiquitous to all forms of life and four different types of metal centers are detected, dividing this class of enzymes into Cu-/Zn-, Ni-, Mn-, and Fe-SODs. In this study, a superoxide dismutase from the thermophilic bacteria Thermobifida fusca (TfSOD) was cloned and expressed before the recombinant enzyme was characterized. The enzyme was found to be active for superoxide dismutation measured by inhibition of cytochrome c oxidation and the inhibition of the autoxidation of pyrogallol. Its pH-optimum was determined to be 7.5, while it has a broad temperature optimum ranging from 20 to 90 °C. Combined with the Tm that was found to be 78.5 ± 0.5 °C at pH 8.0, TfSOD can be defined as a thermostable enzyme. Moreover, the crystal structure of TfSOD was determined and refined to 1.25 Å resolution. With electron paramagnetic resonance spectroscopy, it was confirmed that iron is the metal co-factor of TfSOD. The cell potential (Em) for the TfSOD-Fe3+/TfSOD-Fe2+ redox couple was determined to be 287 mV.


Assuntos
Superóxido Dismutase , Superóxidos , Peróxido de Hidrogênio , Thermobifida
3.
Proc Natl Acad Sci U S A ; 117(32): 19178-19189, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723819

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performed an integrated NMR/electron paramagnetic resonance (EPR) study into the detailed aspects of an AA10 LPMO-substrate interaction. Using NMR spectroscopy, we have elucidated the solution-phase structure of apo-BlLPMO10A from Bacillus licheniformis, along with solution-phase structural characterization of the Cu(I)-LPMO, showing that the presence of the metal has minimal effects on the overall protein structure. We have, moreover, used paramagnetic relaxation enhancement (PRE) to characterize Cu(II)-LPMO by NMR spectroscopy. In addition, a multifrequency continuous-wave (CW)-EPR and 15N-HYSCORE spectroscopy study on the uniformly isotope-labeled 63Cu(II)-bound 15N-BlLPMO10A along with its natural abundance isotopologue determined copper spin-Hamiltonian parameters for LPMOs to markedly improved accuracy. The data demonstrate that large changes in the Cu(II) spin-Hamiltonian parameters are induced upon binding of the substrate. These changes arise from a rearrangement of the copper coordination sphere from a five-coordinate distorted square pyramid to one which is four-coordinate near-square planar. There is also a small reduction in metal-ligand covalency and an attendant increase in the d(x2-y2) character/energy of the singly occupied molecular orbital (SOMO), which we propose from density functional theory (DFT) calculations predisposes the copper active site for the formation of a stable Cu-O2 intermediate. This switch in orbital character upon addition of chitin provides a basis for understanding the coupling of substrate binding with O2 activation in chitin-active AA10 LPMOs.


Assuntos
Bacillus licheniformis/enzimologia , Proteínas de Bactérias/química , Quitina/metabolismo , Oxigenases de Função Mista/química , Oxigênio/metabolismo , Bacillus licheniformis/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Quitina/química , Cobre/química , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Imageamento por Ressonância Magnética , Oxigenases de Função Mista/metabolismo , Oxigênio/química , Especificidade por Substrato
4.
Biochemistry ; 60(47): 3633-3643, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34738811

RESUMO

The copper-dependent lytic polysaccharide monooxygenases (LPMOs) are receiving attention because of their role in the degradation of recalcitrant biomass and their intriguing catalytic properties. The fundamentals of LPMO catalysis remain somewhat enigmatic as the LPMO reaction is affected by a multitude of LPMO- and co-substrate-mediated (side) reactions that result in a complex reaction network. We have performed kinetic studies with two LPMOs that are active on soluble substrates, NcAA9C and LsAA9A, using various reductants typically employed for LPMO activation. Studies with NcAA9C under "monooxygenase" conditions showed that the impact of the reductant on catalytic activity is correlated with the hydrogen peroxide-generating ability of the LPMO-reductant combination, supporting the idea that a peroxygenase reaction is taking place. Indeed, the apparent monooxygenase reaction could be inhibited by a competing H2O2-consuming enzyme. Interestingly, these fungal AA9-type LPMOs were found to have higher oxidase activity than bacterial AA10-type LPMOs. Kinetic analysis of the peroxygenase activity of NcAA9C on cellopentaose revealed a fast stoichiometric conversion of high amounts of H2O2 to oxidized carbohydrate products. A kcat value of 124 ± 27 s-1 at 4 °C is 20 times higher than a previously described kcat for peroxygenase activity on an insoluble substrate (at 25 °C) and some 4 orders of magnitude higher than typical "monooxygenase" rates. Similar studies with LsAA9A revealed differences between the two enzymes but confirmed fast and specific peroxygenase activity. These results show that the catalytic site arrangement of LPMOs provides a unique scaffold for highly efficient copper redox catalysis.


Assuntos
Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Biomassa , Domínio Catalítico , Cobre/química , Cobre/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Peróxido de Hidrogênio/metabolismo , Cinética , Lentinula/enzimologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/isolamento & purificação , Neurospora crassa/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
5.
J Proteome Res ; 20(8): 4041-4052, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34191517

RESUMO

Chitin is an abundant natural polysaccharide that is hard to degrade because of its crystalline nature and because it is embedded in robust co-polymeric materials containing other polysaccharides, proteins, and minerals. Thus, it is of interest to study the enzymatic machineries of specialized microbes found in chitin-rich environments. We describe a genomic and proteomic analysis of Andreprevotia ripae, a chitinolytic Gram-negative bacterium isolated from an anthill. The genome of A. ripae encodes four secreted family GH19 chitinases of which two were detected and upregulated during growth on chitin. In addition, the genome encodes as many as 25 secreted GH18 chitinases, of which 17 were detected and 12 were upregulated during growth on chitin. Finally, the single lytic polysaccharide monooxygenase (LPMO) was strongly upregulated during growth on chitin. Whereas 66% of the 29 secreted chitinases contained two carbohydrate-binding modules (CBMs), this fraction was 93% (13 out of 14) for the upregulated chitinases, suggesting an important role for these CBMs. Next to an unprecedented multiplicity of upregulated chitinases, this study reveals several chitin-induced proteins that contain chitin-binding CBMs but lack a known catalytic function. These proteins are interesting targets for discovery of enzymes used by nature to convert chitin-rich biomass. The MS proteomic data have been deposited in the PRIDE database with accession number PXD025087.


Assuntos
Betaproteobacteria/enzimologia , Quitinases , Proteômica , Animais , Formigas/microbiologia , Proteínas de Bactérias/genética , Betaproteobacteria/isolamento & purificação , Quitina , Quitinases/genética , Oxigenases de Função Mista/genética , Polissacarídeos
6.
Biochemistry ; 59(48): 4581-4590, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33213137

RESUMO

Chito-oligosaccharides (CHOS) are homo- or hetero-oligomers of N-acetylglucosamine (GlcNAc, A) and d-glucosamine (GlcN, D). Production of well-defined CHOS-mixtures, or even pure CHOS, with specific lengths and sugar compositions, is of great interest since these oligosaccharides have interesting bioactivities. While direct chemical synthesis of CHOS is not straightforward, chemo-enzymatic approaches have shown some promise. We have used engineered glycoside hydrolases to catalyze oligomerization of activated DA building blocks through transglycosylation reactions. The building blocks were generated from readily available (GlcNAc)2-para-nitrophenol through deacetylation of the nonreducing end sugar with a recombinantly expressed deacetylase from Aspergillus niger (AnCDA9). This approach, using a previously described hyper-transglycosylating variant of ChiA from Serratia marcescens (SmChiA) and a newly generated transglycosylating variant of Chitinase D from Serratia proteamaculans (SpChiD), led to production of CHOS containing up to ten alternating D and A units [(DA)2, (DA)3, (DA)4, and (DA)5]. The most abundant compounds were purified and characterized. Finally, we demonstrate that (DA)3 generated in this study may serve as a specific inhibitor of the human chitotriosidase. Inhibition of this enzyme has been suggested as a therapeutic strategy against systemic sclerosis.


Assuntos
Quitina/análogos & derivados , Oligossacarídeos/biossíntese , Oligossacarídeos/síntese química , Acetilglucosamina/química , Aspergillus niger/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Quitina/biossíntese , Quitina/síntese química , Quitinases/genética , Quitinases/metabolismo , Cristalografia por Raios X , Glucosamina/química , Hexosaminidases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligossacarídeos/química , Serratia/enzimologia , Serratia/genética , Serratia marcescens/enzimologia , Serratia marcescens/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
J Biol Chem ; 294(5): 1516-1528, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30514757

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that catalyze oxidative cleavage of glycosidic bonds in polysaccharides in the presence of an external electron donor (reductant). In the classical O2-driven monooxygenase reaction, the reductant is needed in stoichiometric amounts. In a recently discovered, more efficient H2O2-driven reaction, the reductant would be needed only for the initial reduction (priming) of the LPMO to its catalytically active Cu(I) form. However, the influence of the reductant on reducing the LPMO or on H2O2 production in the reaction remains undefined. Here, we conducted a detailed kinetic characterization to investigate how the reductant affects H2O2-driven degradation of 14C-labeled chitin by a bacterial LPMO, SmLPMO10A (formerly CBP21). Sensitive detection of 14C-labeled products and careful experimental set-ups enabled discrimination between the effects of the reductant on LPMO priming and other effects, in particular enzyme-independent production of H2O2 through reactions with O2 When supplied with H2O2, SmLPMO10A catalyzed 18 oxidative cleavages per molecule of ascorbic acid, suggesting a "priming reduction" reaction. The dependence of initial rates of chitin degradation on reductant concentration followed hyperbolic saturation kinetics, and differences between the reductants were manifested in large variations in their half-saturating concentrations (KmRapp). Theoretical analyses revealed that KmRapp decreases with a decreasing rate of polysaccharide-independent LPMO reoxidation (by either O2 or H2O2). We conclude that the efficiency of LPMO priming depends on the relative contributions of reductant reactivity, on the LPMO's polysaccharide monooxygenase/peroxygenase and reductant oxidase/peroxidase activities, and on reaction conditions, such as O2, H2O2, and polysaccharide concentrations.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Quitina/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxigenases de Função Mista/metabolismo , Polissacarídeos Bacterianos/metabolismo , Substâncias Redutoras/farmacologia , Cinética , Oxidantes/farmacologia , Oxirredução , Especificidade por Substrato
8.
Biochem Biophys Res Commun ; 521(1): 120-124, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629467

RESUMO

In nature, recalcitrant polysaccharides such as chitin and cellulose are degraded by glycoside hydrolases (GH) that act synergistically through different modes of action including attack from reducing-end and nonreducing-end (exo-mode) and random (endo-mode) on single polysaccharide chains. Both modes can be combined with a processive mechanism where the GH remain bound to the polysaccharide to perform multiple catalytic steps before dissociation into the solution. In this work, we have determined association rate constants and their activation paramaters for three co-evolved GHs from Serratia marcescens (SmChiA, SmChiB, and SmChiC) with an oligomeric substrate. Interestingly, we observe a positive correlation between the association rate constants and processive ability for the GHs. Previously, a positive correlation has been observed between substrate binding affinity and processive ability. SmChiA with highest processive ability of the three GHs bind with a kon of 11.5 ±â€¯0.2 µM-1s-1, which is five-fold and 130-fold faster than SmChiB (less processive) and SmChiC (nonprocessive), respectively.


Assuntos
Glicosídeo Hidrolases/metabolismo , Serratia marcescens/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Cinética , Modelos Moleculares
9.
Biochemistry ; 58(12): 1648-1659, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30785271

RESUMO

The enzymatic breakdown of recalcitrant polysaccharides is achieved by synergistic enzyme cocktails of glycoside hydrolases (GHs) and accessory enzymes. Many GHs are processive, meaning that they stay bound to the substrate between subsequent catalytic interactions. Cellulases are GHs that catalyze the hydrolysis of cellulose [ß-1,4-linked glucose (Glc)]. Here, we have determined the relative subsite binding affinity for a glucose moiety as well as the thermodynamic signatures for (Glc)6 binding to three of the seven cellulases produced by the bacterium Thermobifida fusca. TfCel48A is exo-processive, TfCel9A endo-processive, and TfCel5A endo-nonprocessive. Initial hydrolysis of (Glc)5 and (Glc)6 was performed in H218O enabling the incorporation of an 18O atom at the new reducing end anomeric carbon. A matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the products reveals the intensity ratios of otherwise identical 18O- and 16O-containing products to provide insight into how the substrate is placed during productive binding. The two processive cellulases have significant binding affinity in subsites where products dissociate during processive hydrolysis, aligned with a need to have a pushing potential to remove obstacles on the substrate. Moreover, we observed a correlation between processive ability and favorable binding free energy, as previously postulated. Upon ligand binding, the largest contribution to the binding free energy is desolvation for all three cellulases as determined by isothermal titration calorimetry. The two endo-active cellulases show a more favorable solvation entropy change compared to the exo-active cellulase, while the two processive cellulases have less favorable changes in binding enthalpy compared to the nonprocessive TfCel5A.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Glucanos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Celulase/química , Celulase/genética , Glucanos/química , Hidrólise , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Isótopos de Oxigênio/química , Ligação Proteica , Thermobifida , Termodinâmica
10.
J Biol Chem ; 293(2): 523-531, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29138240

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, and are of interest in biotechnological utilization of these abundant biomaterials. It has recently been shown that LPMOs can use H2O2, instead of O2, as a cosubstrate. This peroxygenase-like reaction by a monocopper enzyme is unprecedented in nature and opens new avenues in chemistry and enzymology. Here, we provide the first detailed kinetic characterization of chitin degradation by the bacterial LPMO chitin-binding protein CBP21 using H2O2 as cosubstrate. The use of 14C-labeled chitin provided convenient and sensitive detection of the released soluble products, which enabled detailed kinetic measurements. The kcat for chitin oxidation found here (5.6 s-1) is more than an order of magnitude higher than previously reported (apparent) rate constants for reactions containing O2 but no added H2O2 The kcat/Km for H2O2-driven degradation of chitin was on the order of 106 m-1 s-1, indicating that LPMOs have catalytic efficiencies similar to those of peroxygenases. Of note, H2O2 also inactivated CBP21, but the second-order rate constant for inactivation was about 3 orders of magnitude lower than that for catalysis. In light of the observed CBP21 inactivation at higher H2O2 levels, we conclude that controlled generation of H2O2in situ seems most optimal for fueling LPMO-catalyzed oxidation of polysaccharides.


Assuntos
Proteínas de Bactérias/metabolismo , Quitina/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos Bacterianos/metabolismo , Cinética
11.
Proc Natl Acad Sci U S A ; 113(21): 5922-7, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27152023

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds using molecular oxygen and an external electron donor. We have used NMR and isothermal titration calorimetry (ITC) to study the interactions of a broad-specificity fungal LPMO, NcLPMO9C, with various substrates and with cellobiose dehydrogenase (CDH), a known natural supplier of electrons. The NMR studies revealed interactions with cellohexaose that center around the copper site. NMR studies with xyloglucans, i.e., branched ß-glucans, showed an extended binding surface compared with cellohexaose, whereas ITC experiments showed slightly higher affinity and a different thermodynamic signature of binding. The ITC data also showed that although the copper ion alone hardly contributes to affinity, substrate binding is enhanced for metal-loaded enzymes that are supplied with cyanide, a mimic of O2 (-) Studies with CDH and its isolated heme b cytochrome domain unambiguously showed that the cytochrome domain of CDH interacts with the copper site of the LPMO and that substrate binding precludes interaction with CDH. Apart from providing insights into enzyme-substrate interactions in LPMOs, the present observations shed new light on possible mechanisms for electron supply during LPMO action.


Assuntos
Desidrogenases de Carboidrato/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Neurospora crassa/enzimologia , Sítios de Ligação , Desidrogenases de Carboidrato/genética , Cobre/química , Proteínas Fúngicas/genética , Oxigenases de Função Mista/genética , Neurospora crassa/genética , Ressonância Magnética Nuclear Biomolecular , Especificidade por Substrato
12.
Molecules ; 24(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717737

RESUMO

Chitin, an insoluble linear polymer of ß-1,4-N-acetyl-d-glucosamine (GlcNAc; A), can be converted to chitosan, a soluble heteropolymer of GlcNAc and d-glucosamine (GlcN; D) residues, by partial deacetylation. In nature, deacetylation of chitin is catalyzed by enzymes called chitin deacetylases (CDA) and it has been proposed that CDAs could be used to produce chitosan. In this work, we show that CDAs can remove up to approximately 10% of N-acetyl groups from two different (α and ß) chitin nanofibers, but cannot produce chitosan.


Assuntos
Amidoidrolases/metabolismo , Quitina/química , Quitosana/química , Acetilação , Amidoidrolases/química , Espectroscopia de Ressonância Magnética , Nanofibras/química
13.
Biochemistry ; 62(22): 3170-3172, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37916429
14.
Biochemistry ; 57(29): 4325-4337, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29939724

RESUMO

Understanding features that determine transglycosylation (TG) activity in glycoside hydrolases is important because it would allow the construction of enzymes that can catalyze controlled synthesis of oligosaccharides. To increase TG activity in two family 18 chitinases, chitinase D from Serratia proteamaculans ( SpChiD) and chitinase A from Serratia marcescens ( SmChiA), we have mutated residues important for stabilizing the reaction intermediate and substrate binding in both donor and acceptor sites. To help mutant design, the crystal structure of the inactive SpChiD-E153Q mutant in complex with chitobiose was determined. We identified three mutations with a beneficial effect on TG activity: Y28A (affecting the -1 subsite and the intermediate), Y222A (affecting the intermediate), and Y226W (affecting the +2 subsite). Furthermore, exchange of D151, the middle residue in the catalytically important DXDXE motif, to asparagine reduced hydrolytic activity ≤99% with a concomitant increase in apparent TG activity. The combination of mutations yielded even higher degrees of TG activity. Reactions with the best mutant, SpChiD-D151N/Y226W/Y222A, led to rapid accumulation of high levels of TG products that remained stable over time. Importantly, the introduction of analogous mutations at the same positions in SmChiA (Y163A equal to Y28A and Y390F similar to Y222A) had similar effects on TG efficiency. Thus, the combination of the decreasing hydrolytic power, subsite affinity, and stability of intermediate states provides a powerful, general strategy for creating hypertransglycosylating mutants of retaining glycoside hydrolases.


Assuntos
Quitinases/química , Quitinases/metabolismo , Serratia marcescens/enzimologia , Sequência de Aminoácidos , Quitinases/genética , Cristalografia por Raios X , Dissacarídeos/metabolismo , Glicosilação , Hidrólise , Modelos Moleculares , Mutação , Alinhamento de Sequência , Serratia/química , Serratia/enzimologia , Serratia/metabolismo , Infecções por Serratia/microbiologia , Serratia marcescens/química , Serratia marcescens/genética , Serratia marcescens/metabolismo
15.
Biochim Biophys Acta ; 1864(2): 242-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26621384

RESUMO

Human chitotriosidase (HCHT) is a glycoside hydrolase family 18 chitinase synthesized and secreted in human macrophages thought be an innate part of the human immune system. It consists of a catalytic domain with the (ß/α)8 TIM barrel fold having a large area of solvent-exposed aromatic amino acids in the active site and an additional family 14 carbohydrate-binding module. To gain further insight into enzyme functionality, especially the effect of the active site aromatic residues, we expressed two variants with mutations in subsites on either side of the catalytic acid, subsite -3 (W31A) and +2 (W218A), and compared their catalytic properties on chitin and high molecular weight chitosans. Exchange of Trp to Ala in subsite -3 resulted in a 12-fold reduction in extent of degradation and a 20-fold reduction in kcat(app) on chitin, while the values are 5-fold and 10-fold for subsite +2. Moreover, aromatic residue mutation resulted in a decrease of the rate of chitosan degradation contrasting previous observations for bacterial family 18 chitinases. Interestingly, the presence of product polymers of 40 sugar moieties and higher starts to disappear already at 8% degradation for HCHT50-W31A. Such behavior contrast that of the wild type and HCHT-W218A and resembles the action of endo-nonprocessive chitinases.


Assuntos
Quitina/química , Quitosana/química , Hexosaminidases/genética , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Domínio Catalítico/genética , Hexosaminidases/química , Humanos , Peso Molecular , Mutação , Especificidade por Substrato
16.
Biochem Biophys Res Commun ; 494(3-4): 736-741, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-28867184

RESUMO

We determined the crystal structure of a LysM module from Pteris ryukyuensis chitinase-A (PrLysM2) at a resolution of 1.8 Å. Structural and binding analysis of PrLysM2 indicated that this module recognizes chitin oligosaccharides in a shallow groove comprised of five sugar-binding subsites on one side of the molecule. The free energy changes (ΔGr°) for binding of (GlcNAc)6, (GlcNAc)5, and (GlcNAc)4 to PrLysM2 were determined to be -5.4, -5,4 and -4.6 kcal mol-1, respectively, by ITC. Thermodynamic dissection of the binding energetics of (GlcNAc)6 revealed that the driving force is the enthalpy change (ΔHr° = -11.7 ± 0.2 kcal/mol) and the solvation entropy change (-TΔSsolv° = -5.9 ± 0.6 kcal/mol). This is the first description of thermodynamic signatures of a chitin oligosaccharide binding to a LysM module.


Assuntos
Quitina/química , Quitina/ultraestrutura , Quitinases/química , Quitinases/ultraestrutura , Oligossacarídeos/química , Oligossacarídeos/ultraestrutura , Pteris/enzimologia , Sítios de Ligação , Lisina/química , Modelos Químicos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
17.
Arch Biochem Biophys ; 620: 35-42, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28359644

RESUMO

Glycoside hydrolases (GHs) catalyze the hydrolysis of glycosidic bonds and are key enzymes in carbohydrate metabolism. Efficient degradation of recalcitrant polysaccharides such as chitin and cellulose is accomplished due to synergistic enzyme cocktails consisting of accessory enzymes and mixtures of GHs with different modes of action and active site topologies. The substrate binding sites of chitinases and cellulases often have surface exposed aromatic amino acids and a tunnel or cleft topology. The active site of the exo-processive chitinase B (ChiB) from Serratia marcescens is partially closed, creating a tunnel-like catalytic cleft. To gain insight in the fundamental principles of substrate binding in this enzyme, we have studied the contribution of five key residues involved in substrate binding and tunnel formation to the thermodynamics of substrate binding. Mutation of Trp97, Phe190, Trp220 and Glu221, which are all part of the tunnel walls, resulted in significant less favorable conformational entropy change (ΔS°conf) upon binding (-TΔΔS°conf = âˆ¼5 kcal/mol). This suggest that these residues are important for the structural rigidity and pre-shaping of the tunnel prior to binding. Mutation of Asp316, which, by forming a hydrogen bond to Trp97 is crucial in the active-site tunnel roof, resulted in a more favorable ΔS°conf relative to the wild type (-TΔΔS°conf = -2.2 kcal/mol). This shows that closing the tunnel-roof comes with an entropy cost, as previously suggested based on the crystal structures of GHs with tunnel topologies in complex with their substrates.


Assuntos
Quitinases/química , Modelos Moleculares , Serratia marcescens/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Quitinases/genética , Entropia , Mutação de Sentido Incorreto
18.
Proc Natl Acad Sci U S A ; 111(23): 8446-51, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912171

RESUMO

For decades, the enzymatic conversion of cellulose was thought to rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. We describe the structural and functional characterization of two functionally coupled cellulose-active LPMOs belonging to auxiliary activity family 10 (AA10) that commonly occur in cellulolytic bacteria. One of these LPMOs cleaves glycosidic bonds by oxidation of the C1 carbon, whereas the other can oxidize both C1 and C4. We thus demonstrate that C4 oxidation is not confined to fungal AA9-type LPMOs. X-ray crystallographic structures were obtained for the enzyme pair from Streptomyces coelicolor, solved at 1.3 Å (ScLPMO10B) and 1.5 Å (CelS2 or ScLPMO10C) resolution. Structural comparisons revealed differences in active site architecture that could relate to the ability to oxidize C4 (and that also seem to apply to AA9-type LPMOs). Despite variation in active site architecture, the two enzymes exhibited similar affinities for Cu(2+) (12-31 nM), redox potentials (242 and 251 mV), and electron paramagnetic resonance spectra, with only the latter clearly different from those of chitin-active AA10-type LPMOs. We conclude that substrate specificity depends not on copper site architecture, but rather on variation in substrate binding and orientation. During cellulose degradation, the members of this LPMO pair act in synergy, indicating different functional roles and providing a rationale for the abundance of these enzymes in biomass-degrading organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Quitina/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zinco/metabolismo
19.
J Biol Chem ; 290(18): 11678-91, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25767120

RESUMO

Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation.


Assuntos
Celulose 1,4-beta-Celobiosidase/antagonistas & inibidores , Celulose 1,4-beta-Celobiosidase/metabolismo , Quitinases/antagonistas & inibidores , Quitinases/metabolismo , Polissacarídeos/metabolismo , Animais , Domínio Catalítico , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Quitina/química , Quitina/metabolismo , Quitinases/química , Dissacarídeos/metabolismo , Dissacarídeos/farmacologia , Hidrólise , Hypocrea/enzimologia , Cinética , Peso Molecular , Nanoestruturas , Polissacarídeos/farmacologia , Ligação Proteica , Serratia marcescens/enzimologia
20.
J Biol Chem ; 290(48): 29074-85, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26468285

RESUMO

Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils.


Assuntos
Proteínas de Bactérias/química , Quitina/química , Quitinases/química , Modelos Químicos , Serratia marcescens/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Serratia marcescens/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA