Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 131: 110571, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32861966

RESUMO

Modulation of several targets in cancer cells enhances the effect of anti-cancer drugs. This can be achieved by using combinations of anti-cancer drugs or by designing new drugs with novel pharmacophore structures that target different molecules within cancer cells. We developed a panel of such compounds by accommodating two chemical entities (5-Aminoslicylic acid and thiazolin-4-one) known to have anti-cancer activities into a single framework structure. Using a panel of 7 cancer cell lines, two compounds (HH3 and HH13) showed efficient cytotoxic effects on some types of cancer comparable to the standard anti-cancer drug doxorubicin with tumor specificity and minimal effects on normal fibroblasts. Investigating the molecular mechanisms of the two compounds revealed (i) induction of DNA damage, (ii) cell cycle arrest in G2/M phase and (iii) induction of apoptosis as indicated by annexin-V staining and activation of caspases. These effects were more prominent in HH compounds-sensitive cells (with IC50 < 0.5µM) than -resistant or normal cells (with IC50 > 1µM). Moreover, both compounds modulate the expression and activity of several factors in the DNA damage response pathway (γ-H2AX, ATM, ATR, CHK1, CHK2), cyclins/cyclin dependent kinases and CDC25 phosphatase. Altogether, our results show that both HH3 and HH13 compounds are good candidates as anti-cancer drug leads for certain types of cancer and worth further detailed investigations of their safety and effectiveness on animal/xenograft models.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Mesalamina/farmacologia , Tiazóis/farmacologia , Células A549 , Antineoplásicos/química , Ciclo Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Células MCF-7 , Mesalamina/química , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA