Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Allergy ; 79(8): 2173-2185, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38995241

RESUMO

BACKGROUND: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. METHODS: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. RESULTS: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. CONCLUSIONS: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.


Assuntos
Alérgenos , Previsões , Pólen , Pólen/imunologia , Previsões/métodos , Humanos , Mudança Climática , Modelos Teóricos , Monitoramento Ambiental/métodos
2.
Environ Res ; 214(Pt 2): 113798, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810819

RESUMO

A coordinated observational and modelling campaign targeting biogenic aerosols in the air was performed during spring 2021 at two locations in Northern Europe: Helsinki (Finland) and Siauliai (Lithuania), approximately 500 km from each other in north-south direction. The campaign started on March 1, 2021 in Siauliai (12 March in Helsinki) and continued till mid-May in Siauliai (end of May in Helsinki), thus recording the transition of the atmospheric biogenic aerosols profile from winter to summer. The observations included a variety of samplers working on different principles. The core of the program was based on 2- and 2.4--hourly sampling in Helsinki and Siauliai, respectively, with sticky slides (Hirst 24-h trap in Helsinki, Rapid-E slides in Siauliai). The slides were subsequently processed extracting the DNA from the collected aerosols, which was further sequenced using the 3-rd generation sequencing technology. The core sampling was accompanied with daily and daytime sampling using standard filter collectors. The hourly aerosol concentrations at the Helsinki monitoring site were obtained with a Poleno flow cytometer, which could recognize some of the aerosol types. The sampling campaign was supported by numerical modelling. For every sample, SILAM model was applied to calculate its footprint and to predict anthropogenic and natural aerosol concentrations, at both observation sites. The first results confirmed the feasibility of the DNA collection by the applied techniques: all but one delivered sufficient amount of DNA for the following analysis, in over 40% of the cases sufficient for direct DNA sequencing without the PCR step. A substantial variability of the DNA yield has been noticed, generally not following the diurnal variations of the total-aerosol concentrations, which themselves showed variability not related to daytime. An expected upward trend of the biological material amount towards summer was observed but the day-to-day variability was large. The campaign DNA analysis produced the first high-resolution dataset of bioaerosol composition in the North-European spring. It also highlighted the deficiency of generic DNA databases in applications to atmospheric biota: about 40% of samples were not identified with standard bioinformatic methods.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera/análise , Monitoramento Ambiental/métodos , Europa (Continente) , Estações do Ano
3.
Allergy ; 75(5): 1099-1106, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31721236

RESUMO

BACKGROUND: The effectiveness of allergen immunotherapy (AIT) in seasonal and perennial allergic rhinitis (AR) depends on the definition of pollen exposure intensity or time period. We recently evaluated pollen and symptom data from Germany to examine the new definitions of the European Academy of Allergy and Clinical Immunology (EAACI) on pollen season and peak pollen period start and end. Now, we aim to confirm the feasibility of these definitions to properly mirror symptom loads for grass and birch pollen-induced allergic rhinitis in other European geographical areas such as Austria, Finland and France, and therefore their suitability for AIT and clinical practice support. METHODS: Data from twenty-three pollen monitoring stations from three countries in Europe and for 3 years (2014-2016) were used to investigate the correlation between birch and grass pollen concentrations during the birch and grass pollen season defined via the EAACI criteria, and total nasal symptom and medication scores as reported with the aid of the patient's hay-fever diary (PHD). In addition, we conducted a statistical analysis, together with a graphical investigation, to reveal correlations and dependencies between the studied parameters. RESULTS: The analysis demonstrated that the definitions of pollen season as well as peak pollen period start and end as proposed by the EAACI are correlated to pollen-induced symptom loads reported by PHD users during birch and grass pollen season. A statistically significant correlation (slightly higher for birch) has been found between the Total Nasal Symptom and Medication Score (TNSMS) and the pollen concentration levels. Moreover, the maximum symptom levels occurred mostly within the peak pollen periods (PPP) following the EAACI criteria. CONCLUSIONS: Based on our analyses, we confirm the validity of the EAACI definitions on pollen season for both birch and grass and for a variety of geographical locations for the four European countries (including Germany from a previous publication) analyzed so far. On this basis, the use of the EAACI definitions is supported in future clinical trials on AIT as well as in daily routine for optimal patient care. Further evaluation of the EAACI criteria in other European regions is recommended.


Assuntos
Betula , Rinite Alérgica , Alérgenos , Áustria , Europa (Continente) , Finlândia , França , Alemanha/epidemiologia , Humanos , Poaceae , Pólen , Estações do Ano
4.
Environ Res ; 174: 160-169, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077991

RESUMO

The effect of height on pollen concentration is not well documented and little is known about the near-ground vertical profile of airborne pollen. This is important as most measuring stations are on roofs, but patient exposure is at ground level. Our study used a big data approach to estimate the near-ground vertical profile of pollen concentrations based on a global study of paired stations located at different heights. We analyzed paired sampling stations located at different heights between 1.5 and 50 m above ground level (AGL). This provided pollen data from 59 Hirst-type volumetric traps from 25 different areas, mainly in Europe, but also covering North America and Australia, resulting in about 2,000,000 daily pollen concentrations analyzed. The daily ratio of the amounts of pollen from different heights per location was used, and the values of the lower station were divided by the higher station. The lower station of paired traps recorded more pollen than the higher trap. However, while the effect of height on pollen concentration was clear, it was also limited (average ratio 1.3, range 0.7-2.2). The standard deviation of the pollen ratio was highly variable when the lower station was located close to the ground level (below 10 m AGL). We show that pollen concentrations measured at >10 m are representative for background near-ground levels.


Assuntos
Monitoramento Ambiental , Pólen , Alérgenos , Austrália , Europa (Continente) , Humanos , Estações do Ano , Manejo de Espécimes
5.
Cochrane Database Syst Rev ; (3): CD009573, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24610769

RESUMO

BACKGROUND: Healthcare workers are at risk of acquiring viral diseases such as hepatitis B, hepatitis C and HIV through exposure to contaminated blood and body fluids at work. Most often infection occurs when a healthcare worker inadvertently punctures the skin of their hand with a sharp implement that has been used in the treatment of an infected patient, thus bringing the patient's blood into contact with their own. Such occurrences are commonly known as percutaneous exposure incidents. OBJECTIVES: To determine the benefits and harms of extra gloves for preventing percutaneous exposure incidents among healthcare workers versus no intervention or alternative interventions. SEARCH METHODS: We searched CENTRAL, MEDLINE, EMBASE, NHSEED, Science Citation Index Expanded, CINAHL, NIOSHTIC, CISDOC, PsycINFO and LILACS until 26 June 2013. SELECTION CRITERIA: Randomised controlled trials (RCTs) with healthcare workers as the majority of participants, extra gloves or special types of gloves as the intervention, and exposure to blood or bodily fluids as the outcome. DATA COLLECTION AND ANALYSIS: Two authors independently assessed study eligibility and risk of bias, and extracted data. We performed meta-analyses for seven different comparisons. MAIN RESULTS: We found 34 RCTs that included 6890 person-operations as participating units and reported on 46 intervention-control group comparisons. We grouped interventions as follows: increased layers of standard gloves, gloves manufactured with special protective materials or thicker gloves, and gloves with puncture indicator systems. Indicator gloves show a coloured spot when they are perforated. Participants were surgeons in all studies and they used at least one pair of standard gloves as the control intervention. Twenty-seven studies also included other surgical staff (e.g. nurses). All but one study used perforations in gloves as an indication of exposure. The median control group rate was 18.5 perforations per 100 person-operations. Seven studies reported blood stains on the skin and two studies reported self reported needlestick injuries. Six studies reported dexterity as visual analogue scale scores for the comparison double versus single gloves, 13 studies reported outer glove perforations. We judged the included studies to have a moderate to high risk of bias.We found moderate-quality evidence that double gloves compared to single gloves reduce the risk of glove perforation (rate ratio (RR) 0.29, 95% confidence interval (CI) 0.23 to 0.37) and the risk of blood stains on the skin (RR 0.35, 95% CI 0.17 to 0.70). Two studies with a high risk of bias also reported the effect of double compared to single gloves on needlestick injuries (RR 0.58, 95% CI 0.21 to 1.62).We found low-quality evidence in one small study that the use of three gloves compared to two gloves reduces the risk of perforation further (RR 0.03, 95% CI 0.00 to 0.52). There was similar low-quality evidence that the use of one fabric glove over one normal glove reduces perforations compared to two normal gloves (RR 0.24, 95% CI 0.06 to 0.93). There was moderate-quality evidence that this effect was similar for the use of one special material glove between two normal material gloves. Thicker gloves did not perform better than thinner gloves.There was moderate to low-quality evidence in two studies that an indicator system does not reduce the total number of perforations during an operation even though it reduces the number of perforations per glove used.There was moderate-quality evidence that double gloves have a similar number of outer glove perforations as single gloves, indicating that there is no loss of dexterity with double gloves (RR 1.10, 95% CI 0.93 to 1.31). AUTHORS' CONCLUSIONS: There is moderate-quality evidence that double gloving compared to single gloving during surgery reduces perforations and blood stains on the skin, indicating a decrease in percutaneous exposure incidents. There is low-quality evidence that triple gloving and the use of special gloves can further reduce the risk of glove perforations compared to double gloving with normal material gloves. The preventive effect of double gloves on percutaneous exposure incidents in surgery does not need further research. Further studies are needed to evaluate the effectiveness and cost-effectiveness of special material gloves and triple gloves, and of gloves in other occupational groups.


Assuntos
Luvas Protetoras , Traumatismos da Mão/prevenção & controle , Pessoal de Saúde , Ferimentos Penetrantes Produzidos por Agulha/prevenção & controle , Desenho de Equipamento , Humanos , Indicadores e Reagentes , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Pathogens ; 12(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36839433

RESUMO

Bad indoor air quality due to toxins and other impurities can have a negative impact on human well-being, working capacity and health. Therefore, reliable methods to monitor the health risks associated with exposure to hazardous indoor air agents are needed. Here, we have used transgenic Caenorhabditis elegans nematode strains carrying stress-responsive fluorescent reporters and evaluated their ability to sense fungal or chemical toxins, especially those that are present in moisture-damaged buildings. Liquid-based or airborne exposure of nematodes to mycotoxins, chemical agents or damaged building materials reproducibly resulted in time- and dose-dependent fluorescent responses, which could be quantitated by either microscopy or spectrometry. Thus, the C. elegans nematodes present an easy, ethically acceptable and comprehensive in vivo model system to monitor the response of multicellular organisms to indoor air toxicity.

7.
Lancet Planet Health ; 3(3): e124-e131, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30904111

RESUMO

BACKGROUND: Ongoing climate change might, through rising temperatures, alter allergenic pollen biology across the northern hemisphere. We aimed to analyse trends in pollen seasonality and pollen load and to establish whether there are specific climate-related links to any observed changes. METHODS: For this retrospective data analysis, we did an extensive search for global datasets with 20 years or more of airborne pollen data that consistently recorded pollen season indices (eg, duration and intensity). 17 locations across three continents with long-term (approximately 26 years on average) quantitative records of seasonal concentrations of multiple pollen (aeroallergen) taxa met the selection criteria. These datasets were analysed in the context of recent annual changes in maximum temperature (Tmax) and minimum temperature (Tmin) associated with anthropogenic climate change. Seasonal regressions (slopes) of variation in pollen load and pollen season duration over time were compared to Tmax, cumulative degree day Tmax, Tmin, cumulative degree day Tmin, and frost-free days among all 17 locations to ascertain significant correlations. FINDINGS: 12 (71%) of the 17 locations showed significant increases in seasonal cumulative pollen or annual pollen load. Similarly, 11 (65%) of the 17 locations showed a significant increase in pollen season duration over time, increasing, on average, 0·9 days per year. Across the northern hemisphere locations analysed, annual cumulative increases in Tmax over time were significantly associated with percentage increases in seasonal pollen load (r=0·52, p=0·034) as were annual cumulative increases in Tmin (r=0·61, p=0·010). Similar results were observed for pollen season duration, but only for cumulative degree days (higher than the freezing point [0°C or 32°F]) for Tmax (r=0·53, p=0·030) and Tmin (r=0·48, p=0·05). Additionally, temporal increases in frost-free days per year were significantly correlated with increases in both pollen load (r=0·62, p=0·008) and pollen season duration (r=0·68, p=0·003) when averaged for all 17 locations. INTERPRETATION: Our findings reveal that the ongoing increase in temperature extremes (Tmin and Tmax) might already be contributing to extended seasonal duration and increased pollen load for multiple aeroallergenic pollen taxa in diverse locations across the northern hemisphere. This study, done across multiple continents, highlights an important link between ongoing global warming and public health-one that could be exacerbated as temperatures continue to increase. FUNDING: None.


Assuntos
Alérgenos/análise , Aquecimento Global , Temperatura Alta , Pólen , Ásia , Europa (Continente) , América do Norte , Estudos Retrospectivos , Estações do Ano
8.
Sci Total Environ ; 615: 228-239, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972900

RESUMO

The paper suggests a methodology for predicting next-year seasonal pollen index (SPI, a sum of daily-mean pollen concentrations) over large regions and demonstrates its performance for birch in Northern and North-Eastern Europe. A statistical model is constructed using meteorological, geophysical and biological characteristics of the previous year). A cluster analysis of multi-annual data of European Aeroallergen Network (EAN) revealed several large regions in Europe, where the observed SPI exhibits similar patterns of the multi-annual variability. We built the model for the northern cluster of stations, which covers Finland, Sweden, Baltic States, part of Belarus, and, probably, Russia and Norway, where the lack of data did not allow for conclusive analysis. The constructed model was capable of predicting the SPI with correlation coefficient reaching up to 0.9 for some stations, odds ratio is infinitely high for 50% of sites inside the region and the fraction of prediction falling within factor of 2 from observations, stays within 40-70%. In particular, model successfully reproduced both the bi-annual cycle of the SPI and years when this cycle breaks down.


Assuntos
Betula , Modelos Estatísticos , Pólen , Estações do Ano , Alérgenos/análise , Países Bálticos , Finlândia , Noruega , República de Belarus , Federação Russa , Suécia
9.
World Allergy Organ J ; 10(1): 31, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932345

RESUMO

BACKGROUND: Grasses release the most widespread aeroallergens with considerable sensitization rates, while different species produce several pollen concentration peaks throughout the season. This study analyzed the prevalence of grass species in three different European city areas and compared the flowering period of these species with daily pollen concentrations and the symptom loads of grass pollen allergy sufferers. METHODS: The most prevalent grass species in Vienna (Austria), Berlin (Germany) and Turku (Finland) were studied and examined by use of three different approaches: phenology, pollen monitoring and symptom load evaluation. A mobile pollen exposure chamber was employed to observe reaction patterns of grass pollen allergy sufferers to three common grass species evaluated in this study versus placebo. RESULTS: Common meadow grass (Poa pratensis) and the fescue grass species (Festuca spp.) are important contributors within the grass pollen season. The pollination period of orchard grass (Dactylis glomerata) and false-oat grass (Arrhenatherum elatius) indicated a greater importance in Berlin and Vienna, whereas a broader spectrum of grass species contributed in Turku to the main pollen season. The standardized provocation induced a nasal symptom load, reduction in nasal flow and increased secretion, in contrary to the placebo control group in grass pollen allergic subjects. CONCLUSION: The phenological observations, pollen measurements and symptom data evaluation provided unique insights into the contribution of multiple grass species in different European regions. All investigated grass species in the provocation induced rhinitis symptoms of comparable significance, with some degree of variation in symptom patterns.

10.
Sci Total Environ ; 548-549: 229-235, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26802351

RESUMO

BACKGROUND: The level of symptoms in pollen allergy sufferers and users of the Patient's Hayfever Diary (PHD), does not directly reflect the total amount of pollen in the air. It is necessary to explain the symptom load and thus the development of allergic symptoms and to determine which environmental factors, besides the pollen load, influence variables. It seems reasonable to suspect allergen content because the amount of allergen varies throughout seasons and regions and is not always correlated with the total pollen amount. METHODS: Data on the allergen content of ambient air (Bet v 1 and Phl p 5) from 2009 until 2011 was used to compare the respective pollen and symptom loads for study regions in Austria, Germany, France and Finland. RESULTS: Our findings suggest that allergen amount (Bet v 1/Phl p 5) has a strong but regionally dependent impact on the symptom load of pollen allergy sufferers. Peak symptom loads can be traced with peak allergen loads. The influence of other important aeroallergens should also be assessed during the pollen season. CONCLUSION: Allergen concentrations have an impact on pollen allergy sufferers although not as clear as assumed previously. The pattern of pollen load and major allergen content distribution does not directly explain the symptom load pattern, although significant positive correlations were found. Thus, monitoring of symptoms via voluntary crowdsourcing should be considered for future pollen and symptom forecasts in order to support pollen allergy sufferers.


Assuntos
Poluentes Atmosféricos/análise , Alérgenos/análise , Exposição Ambiental/análise , Pólen , Rinite Alérgica Sazonal/epidemiologia , Poluição do Ar/estatística & dados numéricos , Áustria/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Finlândia/epidemiologia , França/epidemiologia , Alemanha/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA