Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Sci Food Agric ; 103(11): 5521-5528, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37058574

RESUMO

BACKGROUND: Pasta is a worldwide popular Italian food made exclusively of durum wheat. The choice of variety to be used to produce pasta is at the discretion of the producer based on the peculiar characteristics of each cultivar. The availability of analytical approaches for the tracking of specific varieties along the productive chain is becoming increasingly important to authenticate the pasta products and distinguish between fraudulent activities and cross-contaminations during the production process. Among the different methods, molecular approaches based on DNA markers are the most used for these purposes because of their ease of use and high reproducibility. RESULTS: In the present study, we used an easy simple sequence repeats-based method to identify the durum wheat varieties used to produce 25 samples of semolina and commercial pasta comparing their molecular profile with those of the four varieties declared by the producer and other 10 durum wheat cultivars commonly used in pasta production. All of the samples showed the expected molecular profile; however, most of them present also a foreign allele indicating a possible cross-contamination. Moreover, we evaluated the accuracy of the proposed approach through the analysis of 27 hand-made mixtures with increasing amounts of a specific contaminant variety, allowing the estimation of the limit of detection of 5% (w/w). CONCLUSION: We demonstrated the feasibility of the proposed method and its effectiveness in the detection of not declared varieties when these are present in a percentage equal to or higher than 5%. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Farinha , Triticum , Triticum/genética , Triticum/química , Reprodutibilidade dos Testes , Farinha/análise , Grão Comestível , Itália
2.
Plant J ; 98(4): 590-606, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735606

RESUMO

Cyclic AMP plays important roles in different physiological processes, including plant defence responses. However, as little information is known on plant enzymes responsible for cAMP production/degradation, studies of cAMP functions have relied, to date, on non-specific pharmacological approaches. We therefore developed a more reliable approach, producing transgenic Arabidopsis thaliana lines overexpressing the 'cAMP-sponge' (cAS), a genetic tool that specifically buffers cAMP levels. In response to an avirulent strain of Pseudomonas syringae pv. tomato (PstAvrB), cAS plants showed a higher bacterial growth and a reduced hypersensitive cell death in comparison with wild-type (WT) plants. The low cAMP availability after pathogen infection delayed cytosolic calcium elevation, as well as hydrogen peroxide increase and induction of redox systems. The proteomic analysis, performed 24 h post-infection, indicated that a core of 49 proteins was modulated in both genotypes, while 16 and 42 proteins were uniquely modulated in WT and cAS lines, respectively. The involvement of these proteins in the impairment of defence response in cAS plants is discussed in this paper. Moreover, in silico analysis revealed that the promoter regions of the genes coding for proteins uniquely accumulating in WT plants shared the CGCG motif, a target of the calcium-calmodulin-binding transcription factor AtSR1 (Arabidopsis thaliana signal responsive1). Therefore, following pathogen perception, the low free cAMP content, altering timing and levels of defence signals, and likely acting in part through the mis-regulation of AtSR1 activity, affected the speed and strength of the immune response.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta , Proteômica , Pseudomonas syringae/patogenicidade
3.
Plant Mol Biol ; 90(4-5): 467-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26786166

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP) is a recognized second messenger; however, knowledge of cAMP involvement in plant physiological processes originates primarily from pharmacological studies. To obtain direct evidence for cAMP function in plants, tobacco Bright Yellow-2 (BY-2) cells were transformed with the cAMP sponge, which is a genetically encoded tool that reduces cAMP availability. BY-2 cells expressing the cAMP sponge (cAS cells), showed low levels of free cAMP and exhibited growth inhibition that was not proportional to the cAMP sponge transcript level. Growth inhibition in cAS cells was closely related to the precocious inhibition of mitosis due to a delay in cell cycle progression. The cAMP deficiency also enhanced antioxidant systems. Remarkable changes occurred in the cAS proteomic profile compared with that of wild-type (WT) cells. Proteins involved in translation, cytoskeletal organization, and cell proliferation were down-regulated, whereas stress-related proteins were up-regulated in cAS cells. These results support the hypothesis that BY-2 cells sense cAMP deficiency as a stress condition. Finally, many proteasome subunits were differentially expressed in cAS cells compared with WT cells, indicating that cAMP signaling broadly affects protein degradation via the ubiquitin/proteasome pathway.


Assuntos
AMP Cíclico/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Nicotiana/citologia , Estresse Fisiológico/fisiologia , Antioxidantes/metabolismo , Linhagem Celular , AMP Cíclico/genética , Plantas Geneticamente Modificadas , Proteômica , Superóxido Dismutase/metabolismo , Fatores de Tempo , Transcriptoma
4.
Molecules ; 21(11)2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27801844

RESUMO

The development of a robust Agrobacterium-mediated transformation protocol for a recalcitrant species like durum wheat requires the identification and optimization of factors affecting T-DNA delivery and plant regeneration. The purpose of this research was to compare the behavior of diverse durum wheat genotypes during in vitro culture and Agrobacterium tumefaciens-mediated transformation, using immature embryos as explants. Apart from plant genotype, two of the main influencing factors for a successful genetic transformation have been examined here, i.e., auxin source (Dicamba and 2,4-D) and duration of the pre-culture period (one, seven and 21 days). The addition of Dicamba to the media in combination with seven days pre-cultivation resulted in a general enhancement of T-DNA delivery for most of the analyzed cultivars, as revealed by ß-glucuronidase (GUS) histochemical assay. Although all genotypes were able to produce calli, significant differences were detected in regeneration and transformation efficiencies, since only two (Karalis and Neolatino) out of 14 cultivars produced fertile transgenic plants. The estimated transformation efficiencies were 6.25% and 1.66% for Karalis and Neolatino, respectively, and χ² analysis revealed the stable integration and segregation of the gus transgene in T1 and T2 progenies. This research has demonstrated that, among the influencing factors, genotype and auxin type play the most important role in the success of durum wheat transformation.


Assuntos
Agrobacterium tumefaciens/fisiologia , DNA Bacteriano/genética , Ácidos Indolacéticos/farmacologia , Triticum/genética , Ácido 2,4-Diclorofenoxiacético/farmacologia , Dicamba/farmacologia , Genótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Técnicas de Cultura de Tecidos , Transformação Genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
5.
Plants (Basel) ; 12(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36986967

RESUMO

The Prunus genus encompasses a group of economically important and closely related crops, sharing an essentially common genome and, thereby, a high level of conserved and transferable microsatellite (SSR) loci. In Southern Italy, many of the local and/or neglected varieties are abandoned and at risk of extinction due to the high degree of urbanization and agricultural intensification, despite their value as genetic resources for crop improvement. This research aimed to genetically and morphologically characterize the traditional apricot (P. armenica) and peach (P. persica) germplasms collected in old family orchards. Most of the official descriptor categories were scored, thus revealing a rather high level of phenotypic variation in both collections. Genetic data allowed the discovery of diversity masked by morphological traits. Genotyping in 15 and 18 SSRs, eight of which were transferable across both species, showed an average polymorphic informativeness (PIC) of 0.44 and 0.59 for apricot and peach, respectively, and a total of 70 and 144 alleles. A reliable identification of each genotype was achieved, and the presence of possible mislabeling and/or erroneous denominations was solved. These results are encouraging for the valorization of the still poorly explored Italian Prunus germplasm, with significant economic consequences for bioresource conservation and management.

6.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214907

RESUMO

Almond cultivation has great traditional and economic relevance in Southern Italy, especially in the Apulia region, where almond trees feature an ample and ancient varietal richness. To contrast the loss of plant genetic erosion and to safeguard the available bioresources, as well as to reinforce the local production, the regional Re.Ge.Fru.P. project aimed to re-evaluate, identify, and characterize the Apulian almond germplasm that is still uncharacterized and not jet studied using a dual (genetic and morphological) approach. Collection was conducted in the regional territory of 187 among the most widespread and minor or marginalized genotypes that were molecularly fingerprinted by means of 18 nuclear microsatellites (simple sequence repeats, SSRs). The high number of scored alleles reflected the great level of diversification within the Apulian germplasm, as also confirmed by neighbor joining and structure analysis, that clearly distinguished different genotype clusters. The phenotypic characterization using 17 morphological and phenological descriptors mirrored the genetic results, revealing a high degree of variability. The morphological traits with the best discriminatory ability were nut ventral suture, shell softness and shape and petal color. This work emphasizes the importance of recovering the genetic variability of Apulian almond germplasm, and the need to promote added value and enhance the local agri-food economy.

7.
Int J Biol Sci ; 18(7): 2851-2866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35541898

RESUMO

Wine production represents an ancient human activity and one of the most economically important markets in Europe. Moreover, the health effects of grapes and related products have been largely demonstrated, and mostly depend on their richness in bioactive molecules such as flavonoid and non-flavonoid phenolic compounds. Italy has the highest global wine production and provides one of the richest grapevine germplasm in the Mediterranean area. In this paper, our attention was focused on the evaluation of the total phenol and anthocyanin content in five autochthonous Apulian grapevine cultivars, in both wines and their non-alcoholic extracts. Moreover, the potential antioxidant effects of the non-alcoholic wine extracts on the cell viability of Caco-2 and HeLa carcinoma cell lines were tested. Finally, for the most promising autochthonous selected cultivars (Negramaro, Nero di Troia and Susumaniello), comparative transcriptomic analysis in berries was performed using high-throughput sequencing technology.


Assuntos
Vitis , Vinho , Células CACO-2 , Frutas/química , Humanos , Fenóis/análise , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Vitis/metabolismo , Vinho/análise
8.
Foods ; 10(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198514

RESUMO

This research focuses on the exploration, recovery and valorization of some minor Italian olive cultivars, about which little information is currently available. Autochthonous and unexplored germplasm has the potential to face unforeseen changes and thus to improve the sustainability of the whole olive system. A pattern of nine minor genotypes cultivated in three Italian regions has been molecularly fingerprinted with 12 nuclear microsatellites (SSRs), that were able to unequivocally identify all genotypes. Moreover, some of the principal phenolic compounds were determined and quantified in monovarietal oils and the expression levels of related genes were also investigated at different fruit developmental stages. Genotypes differed to the greatest extent in the content of oleacein (3,4-DHPEA-EDA) and total phenols. Thereby, minor local genotypes, characterized by stable production and resilience in a low-input agro-system, can provide a remarkable contribution to the improvement of the Italian olive production chain and can become very profitable from a socio-economic point of view.

9.
Sci Rep ; 11(1): 9885, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972605

RESUMO

The Targeting Induced Local Lesions in Genomes (TILLING) technology is a reverse genetic strategy broadly applicable to every kind of genome and represents an attractive tool for functional genomic and agronomic applications. It consists of chemical random mutagenesis followed by high-throughput screening of point mutations in targeted genomic regions. Although multiple methods for mutation discovery in amplicons have been described, next-generation sequencing (NGS) is the tool of choice for mutation detection because it quickly allows for the analysis of a large number of amplicons. The aim of the present work was to screen a previously generated sunflower TILLING population and identify alterations in genes involved in several important and complex physiological processes. Twenty-one candidate sunflower genes were chosen as targets for the screening. The TILLING by sequencing strategy allowed us to identify multiple mutations in selected genes and we subsequently validated 16 mutations in 11 different genes through Sanger sequencing. In addition to addressing challenges posed by outcrossing, our detection and validation of mutations in multiple regulatory loci highlights the importance of this sunflower population as a genetic resource.


Assuntos
Produtos Agrícolas/genética , Genoma de Planta , Helianthus/genética , Melhoramento Vegetal/métodos , Genética Reversa/métodos , Biologia Computacional , Biblioteca Gênica , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese , Mutação Puntual , Polimorfismo de Nucleotídeo Único
10.
Hortic Res ; 8(1): 29, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33518713

RESUMO

Seedlessness represents a highly appreciated trait in table grapes. Based on an interesting case of seedless fruit production described in the crop species Annona squamosa, we focused on the Vitis vinifera INNER NO OUTER (INO) gene as a candidate. This gene encodes a transcription factor belonging to the YABBY family involved in the determination of abaxial identity in several organs. In Arabidopsis thaliana, this gene was shown to be essential for the formation and asymmetric growth of the ovule outer integument and its mutation leads to a phenotypic defect of ovules and failure in seed formation. In this study, we identified in silico the V. vinifera orthologue and investigated its phylogenetic relationship to INO genes from other species and its expression in different organs in seeded and seedless varieties. Applying cross-species complementation, we have tested its functionality in the Arabidopsis ino-1 mutant. We show that the V. vinifera INO successfully rescues the ovule outer integument growth and seeds set and also partially complements the outer integument asymmetric growth in the Arabidopsis mutant, differently from orthologues from other species. These data demonstrate that VviINO retains similar activity and protein targets in grapevine as in Arabidopsis. Potential implications for grapevine breeding are discussed.

11.
Genes (Basel) ; 11(2)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102450

RESUMO

Cultivation of faba bean (Vicia faba L.) in Tunisia is largely based on improved varieties of the crop. However, a few farmers continue to produce local cultivars or landraces. The National Gene Bank of Tunisia (NGBT) recently launched a collection project for faba bean landraces, with special focus on the regions of the North West, traditionally devoted to cultivating grain legumes, and where around 80% of the total national faba bean cultivation area is located. The seed phenotypic features of the collected samples were studied, and the genetic diversity and population structure analyzed using simple sequence repeat markers. The genetic constitution of the present samples was compared to that of faba bean samples collected by teams of the International Center for Agricultural Research in the Dry Areas (ICARDA) in the 1970s in the same region, and stored at the ICARDA gene bank. The results of the diversity analysis demonstrate that the recently collected samples and those stored at ICARDA largely overlap, thus demonstrating that over the past 50 years, little genetic change has occurred to the local faba bean populations examined. These findings suggest that farmers serendipitously applied international best practices for in situ conservation of agricultural crops.


Assuntos
Vicia faba/crescimento & desenvolvimento , Vicia faba/genética , Agricultura/métodos , Produtos Agrícolas/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genótipo , Repetições de Microssatélites/genética , Tunísia
12.
Front Plant Sci ; 11: 73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153605

RESUMO

The olive tree is one of the most important economic, cultural, and environmental resources for Italy, in particular for the Apulian region, where it shows a wide diversity. The increasing attention to the continuous loss of plant genetic diversity due to social, economic and climatic changes, has favored a renewed interest in strategies aimed at the recovery and conservation of these genetic resources. In the frame of a project for the valorization of the olive Apulian biodiversity (Re.Ger.O.P. project), 177 minor genotypes were recovered in different territories of the region. They were submitted to morphological, molecular, technological and phytosanitary status analysis in comparison with reference cultivars, then they were propagated and transferred in an ex situ field. All the available information was stored in an internal regional database including photographic documentation and geographic position. The work allowed obtaining information about the genetic diversity of Apulian germplasm, to clarify cases of homonymy and synonymy, to check the sanitary status, and to identify candidate genotypes useful both to set up breeding programs and to enrich the panel of olive cultivars available to farmers for commercial exploitation.

13.
Front Plant Sci ; 10: 451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031787

RESUMO

The morphology of olive flowers allows either self- or cross-pollination that could partially explain the existence of both reproductive features in this species. However, a high degree of self-incompatibility is reported for many olive genotypes, that could be an important reproductive barrier influencing olive yield. Due to the strong environmental influence, results of compatibility tests are often contradictory, making cultivar classification quite imprecise. In this study, the self-incompatibility value has been determined for four olive genotypes (Bella di Spagna, Coratina, Leccino, and Ogliarola barese) widespread in the Mediterranean basin. Moreover, the incompatibility relationships of cultivar Coratina with some suitable pollinizers (Leccino, Oliastro, and Picholine) have been studied in controlled crosses: the in vitro germination potential of progenies has been evaluated and the selection of cross-derived embryos has been indirectly performed by the molecular characterization of the corresponding endosperm. The results increase knowledge on factors affecting self-compatibility in olive. Moreover, they provide useful information to farmers about the most effective cultivars for the set-up of new olive grove or for graft planning. Finally, they provide a new strategy and procedure based on endosperm analysis by SSRs for an accurate, fast, and relatively cheap screening of embryos/seedlings.

14.
Front Plant Sci ; 9: 941, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026747

RESUMO

Flavonoids are a well-studied group of secondary metabolites, belonging to the phenylpropanoid pathway. Flavonoids are known to exhibit health promoting effects such as antioxidant capacities, anti-cancer and anti-inflammatory activity. Globe artichoke is an important source of bioactive phenolic compounds, including flavonoids. To study the regulation of their biosynthesis, a R2R3-MYB transcription factor, CcMYB12, was isolated from artichoke leaves. Phylogenetic analysis showed that this protein belongs to the MYB subgroup 7 (flavonol-specific MYB), which includes Arabidopsis AtMYB12, grapevine VvMYBF1, and tomato SlMYB12. CcMYB12 transcripts were detected specifically in artichoke immature inflorescence and young leaves and overlapped with the profiles of flavonol biosynthetic genes. Electrophoretic mobility shift assays (EMSAs) revealed that recombinant CcMYB12 protein is able to bind to ACII element, a DNA binding site ubiquitously present in the promoters of genes encoding flavonol biosynthetic enzymes. In transgenic Arabidopsis plants, the overexpression of CcMYB12 activated the expression of endogenous flavonol biosynthesis genes, leading to an increase of flavonol accumulation and a decrease of anthocyanins in leaves. Likewise, in transgenic tobacco petals and leaves, the overexpression of CcMYB12 decreased anthocyanin levels and increased flavonols.

15.
PeerJ ; 6: e5260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018865

RESUMO

BACKGROUND: The olive tree is a typical crop of the Mediterranean basin where it shows a wide diversity, accounting for more than 2,600 cultivars. The ability to discriminate olive cultivars and determine their genetic variability is pivotal for an optimal exploitation of olive genetic resources. METHODS: We investigated the genetic diversity within 128 olive accessions belonging to four countries in the Mediterranean Basin (Italy, Algeria, Syria, and Malta), with the purpose of better understanding the origin and spread of the olive genotypes across Mediterranean Basin countries. Eleven highly polymorphic simple sequence repeat (SSR) markers were used and proved to be very informative, producing a total of 179 alleles. RESULTS: Cluster analysis distinguished three main groups according to their geographical origin, with the current sample of Maltese accessions included in the Italian group. Phylogenetic analysis further differentiated Italian and Maltese olive accessions, clarifying the intermediate position of Maltese accessions along the x/y-axes of principal coordinate analysis (PCoA). Model-based and neighbor clustering, PCoA, and migration analysis suggested the existence of two different gene pools (Algerian and Syrian) and that the genetic exchange occurred between the Syrian, Italian and Maltese populations. DISCUSSION: The close relationship between Syrian and Italian and Maltese olives was consistent with the historical domestication and migration of olive tree from the North Levant to eastern Mediterranean basin. This study lays the foundations for a better understanding of olive genetic diversity in the Mediterranean basin and represents a step toward an optimal conservation and exploitation of olive genetic resources.

16.
Sci Rep ; 8(1): 15877, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367101

RESUMO

Information on the distribution of genetic variation is essential to preserve olive germplasm from erosion and to recover alleles lost through selective breeding. In addition, knowledge on population structure and genotype-phenotype associations is crucial to support modern olive breeding programs that must respond to new environmental conditions imposed by climate change and novel biotic/abiotic stressors. To further our understanding of genetic variation in the olive, we performed genotype-by-sequencing on a panel of 94 Italian olive cultivars. A reference-based and a reference-independent SNP calling pipeline generated 22,088 and 8,088 high-quality SNPs, respectively. Both datasets were used to model population structure via parametric and non parametric clustering. Although the two pipelines yielded a 3-fold difference in the number of SNPs, both described wide genetic variability among our study panel and allowed individuals to be grouped based on fruit weight and the geographical area of cultivation. Multidimensional scaling analysis on identity-by-state allele-sharing values as well as inference of population mixtures from genome-wide allele frequency data corroborated the clustering pattern we observed. These findings allowed us to formulate hypotheses about geographical relationships of Italian olive cultivars and to confirm known and uncover novel cases of synonymy.


Assuntos
Variação Genética , Genoma de Planta , Olea/genética , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Itália , Desequilíbrio de Ligação , Olea/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
17.
J Agric Food Chem ; 55(10): 3857-62, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17439146

RESUMO

Collina di Brindisi is an Italian extra virgin olive oil that obtained the mark of protected designation of origin (PDO) according to EC Regulation 2081/92. The varietal requirements of the official production protocol of this oil foresee that this oil is prepared from cultivar Ogliarola (minimum 70%) and other Olea europaea L. cultivars that are diffused in the production area, accounting for a maximum of 30%. The aim of this work was to verify the effectiveness of microsatellite analysis in verifying the identity of Collina di Brindisi PDO olive oil. A preliminary assessment of product's quality by means of chemical analyses was also carried out. Microsatellite analysis clarified that the generic name Ogliarola, indicated in the technical sheet of this PDO oil, actually corresponded to the Ogliarola salentina cultivar. Furthermore, the obtained results showed that the examination of a limited number of DNA microsatellites enables the identification of the Ogliarola salentina cultivar in this PDO oil.


Assuntos
Repetições de Microssatélites , Óleos de Plantas/classificação , Manipulação de Alimentos/métodos , Itália , Legislação sobre Alimentos , Olea/classificação , Olea/genética , Azeite de Oliva , Óleos de Plantas/química
18.
Sci Rep ; 6: 36423, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811978

RESUMO

The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


Assuntos
Arabidopsis/metabolismo , GMP Cíclico/metabolismo , Resistência à Doença/fisiologia , Guanilato Ciclase/metabolismo , Animais , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/química , Glutationa/metabolismo , Guanilato Ciclase/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteoma/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Ratos , Transcriptoma
19.
Plant Physiol Biochem ; 69: 1-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685785

RESUMO

The ω-3 fatty acid desaturases (FADs) are enzymes responsible for catalyzing the conversion of linoleic acid to α-linolenic acid localized in the plastid or in the endoplasmic reticulum. In this research we report the genotypic and phenotypic variation of Italian Olea europaea L. germoplasm for the fatty acid composition. The phenotypic oil characterization was followed by the molecular analysis of the plastidial-type ω-3 FAD gene (fad7) (EC 1.14.19), whose full-length sequence has been here identified in cultivar Leccino. The gene consisted of 2635 bp with 8 exons and 5'- and 3'-UTRs of 336 and 282 bp respectively, and showed a high level of heterozygousity (1/110 bp). The natural allelic variation was investigated both by a LiCOR EcoTILLING assay and the PCR product direct sequencing. Only three haplotypes were identified among the 96 analysed cultivars, highlighting the strong degree of conservation of this gene.


Assuntos
Ácidos Graxos/metabolismo , Olea/metabolismo , Proteínas de Plantas/genética , Éxons/genética , Regulação da Expressão Gênica de Plantas , Heterozigoto , Filogenia , Proteínas de Plantas/classificação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA